Appendix G Air Quality

A. INTRODUCTION

Section 6-4-4, Air Quality, of this Draft Design Report/Draft Environmental Impact Statement (DDR/DEIS) summarizes the assessment of potential effects on ambient air quality from the operation of the Project in accordance with the procedures found in the New York State Department of Transportation (NYSDOT) Environmental Manual (TEM). Potential air quality effects associated with the construction phase are also described. This appendix describes the regulatory context, methodology, and results of the air quality assessment.

Mesoscale emissions for carbon monoxide (CO), volatile organic compounds (VOCs), oxides of nitrogen (NO_x), particulate matter (PM) less than or equal to 2.5 micrometers (PM_{2.5}) and PM less than or equal to 10 micrometers (PM₁₀) were assessed over the area studied in the traffic modeling for the No Build, Viaduct, and Community Grid Alternatives (see **Chapter 5, Transportation and Engineering Considerations**, for traffic information) for estimated time of completion (ETC) and estimated time of completion+30 (ETC+30). The analysis years of 2026 and 2056 were determined to be reasonably representative of roadway conditions at the time of completion.

The Project would not introduce any new, permanent stationary emission sources, such as boilers or generators.

B. REGULATORY CONTEXT

NATIONAL AMBIENT AIR QUALITY STANDARDS

As required by the Clean Air Act and its Amendments of 1990 (CAA), primary and secondary National Ambient Air Quality Standards (NAAQS) have been established for six major air pollutants: CO, nitrogen dioxide (NO₂), ozone, PM (PM_{2.5} and PM₁₀), sulfur dioxide (SO₂), and lead. The primary standards represent levels that are requisite to protect the public health, allowing an adequate margin of safety. The secondary standards are intended to protect the nation's welfare and account for air pollutant effects on soil, water, visibility, materials, vegetation, and other aspects of the environment. The primary standards are generally either the same as the secondary standards or more restrictive. The NAAQS are presented in **Table G-1**.

In addition to the criteria pollutants discussed above, toxic air pollutants, or mobile source air toxics (MSATs), are pollutants known to cause or are suspected of causing cancer or other serious health ailments. The CAA Amendments of 1990 listed 188 air toxics and addressed the need to control toxic emissions from transportation. EPA identified nine compounds with significant contributions from mobile sources that are among the national and regional-scale cancer risk drivers or contributors and non-cancer hazard contributors from the 2011 National Air Toxics Assessment (NATA). These are 1,3-butadiene, acetaldehyde, acrolein, benzene, diesel particulate matter (diesel PM), ethylbenzene, formaldehyde, naphthalene, and polycyclic organic matter. While FHWA considers these the priority mobile source air toxics, the list is subject to change and may be adjusted in consideration of future EPA rules.

Table G-1 National Ambient Air Quality Standards (NAAQS)

Pollu	utant	Primary / Secondary	Averaging Time	Level	Form
Carbon Mo	noxide (CO)	primary	8 hours	9 ppm	Not to be exceeded more
Carbon No		primary	1 hour	35 ppm	than once per year
Lead	l (Pb)	primary and secondary	Rolling 3 month average	0.15 μg/m ³⁽¹⁾	Not to be exceeded
Nitrogen Dioxide (NO ₂)		primary	1 hour	100 ррb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		primary and secondary	1 year	53 ppb ⁽²⁾	Annual Mean
Ozone (O3)		primary and secondary	8 hours	0.070 ppm ⁽³⁾	Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years
		primary	1 year	12.0 µg/m³	Annual mean, averaged over 3 years
Particle	PM _{2.5}	secondary	1 year	15.0 µg/m³	Annual mean, averaged over 3 years
Pollution (PM)		primary and secondary	24 hours	35 μg/m³	98th percentile, averaged over 3 years
	PM10	primary and secondary	24 hours	150 µg/m³	Not to be exceeded more than once per year on average over 3 years
Sulfur Dioxide	primary	1 hour	75 ppb ⁽⁴⁾	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years	Sulfur Dioxide (SO ₂)
(SO ₂)	secondary	3 hours	0.5 ppm	Not to be exceeded more than once per year	

Notes:

ppm – parts per million (unit of measure for gases only)

µg/m³ – micrograms per cubic meter (unit of measure for gases and particles, including lead)

All annual periods refer to calendar year.

(1) In areas that are designated to be in nonattainment for the Pb standards prior to the promulgation of the current (2008) standards, and for which implementation plans to attain or maintain the current (2008) standards have not been submitted and approved, the previous standards (1.5 µg/m³ as a calendar quarter average) also remain in effect.

⁽²⁾ The level of the annual NO₂ standard is 0.053 ppm. It is shown here in terms of ppb for the purposes of clearer comparison to the 1-hour standard level.

⁽³⁾ The final rule was signed on October 1, 2015, effective December 28, 2015. The previous (2008) O₃ standards additionally remain in effect in some areas. Revocation of the previous (2008) O₃ standards and transitioning to the current (2015) standards will be addressed in the implementation rule for the current standards.

⁽⁴⁾ The previous SO₂ standards (0.14 ppm 24-hour and 0.03 ppm annual) will also remain in effect in certain areas: (1) any area for which it is not yet 1 year since the effective date of designation under the current (2010) standards, and (2) any area for which an implementation plan providing for attainment of the current (2010) standard has not been submitted and approved and which is designated nonattainment under the previous SO₂ standards or is not meeting the requirements of a SIP call under the previous SO₂ standards (40 CFR 50.4[3]). A SIP call is an EPA action requiring a state to resubmit all or part of its State Implementation Plan to demonstrate attainment of the required NAAQS.

Sources: 40 CFR Part 50. National Primary and Secondary Ambient Air Quality Standards. USEPA. https://www.epa.gov/criteria-air-pollutants/naaqs-table. Retrieved March, 2021.

NAAQS ATTAINMENT STATUS AND STATE IMPLEMENTATION PLANS

The CAA, as amended in 1990, defines non-attainment areas (NAA) as geographic regions that have been designated as not meeting one or more of the NAAQS. When an area is designated as non-attainment by USEPA, the state is required to develop and implement a State Implementation Plan (SIP), which delineates how a state plans to achieve air quality that meets the NAAQS under the deadlines established by the CAA, followed by a plan for maintaining attainment status once the area is in attainment.

Onondaga County is currently in attainment for all standards of criteria pollutants.

C. METHODOLOGY

Emissions from motor vehicles are referred to as on-road emissions, while emissions from construction equipment are referred to as non-road emissions. In both cases, emissions result from combustion of fuels. On-road emission sources are predominantly gasoline passenger vehicles and diesel trucks.

POLLUTANTS FOR ANALYSIS

Air quality is affected by air pollutants produced by both motor vehicles and stationary sources. Emissions from motor vehicles are referred to as mobile source emissions, while emissions from fixed facilities are referred to as stationary source emissions. Ambient concentrations of CO are predominantly influenced by mobile source emissions. PM, VOCs, and NO_x are emitted from both mobile and stationary sources. Fine PM is also formed when emissions of NO_x, sulfur oxides (SOx), ammonia, organic compounds, and other gases react or condense in the atmosphere. Emissions of sulfur dioxide (SO₂) are associated mainly with stationary sources, and some sources utilizing non-road diesel such as large international marine engines. On-road diesel vehicles currently contribute very little to SO₂ emissions since the sulfur content of on-road diesel fuel, which is federally regulated, is extremely low. Ozone is formed in the atmosphere by complex photochemical processes that include NO_x and VOCs. Ambient concentrations of CO, PM, NO₂, SO₂, ozone, and lead are regulated by USEPA under the CAA and are referred to as 'criteria pollutants'; emissions of VOCs, NO_x, and other precursors to criteria pollutants are also regulated by USEPA.

CARBON MONOXIDE

CO, a colorless and odorless gas, is produced primarily by the incomplete combustion of gasoline and other fossil fuels. In urban areas, approximately 80 to 90 percent of CO emissions are from motor vehicles. CO concentrations can diminish rapidly over relatively short distances; elevated concentrations are usually limited to locations near crowded intersections, heavily traveled and congested roadways, parking lots, and garages. Consequently, CO concentrations must be analyzed on a local (microscale) basis.

NITROGEN OXIDES, VOCS, AND OZONE

 NO_x are of principal concern because of their role, together with VOCs, as precursors in the formation of ozone. Ozone is formed through a series of reactions that take place in the atmosphere in the presence of sunlight. The effects of NO_x and VOC emissions from all sources are generally examined on a regional basis. The contribution of an action or project to regional emissions of these pollutants would include any added stationary or mobile source emissions.

The Project would potentially result in changes to the regional vehicular travel patterns in the study areas. Therefore, the change in regional NO_x and VOC emissions was analyzed.

In addition to being a precursor to the formation of ozone, NO₂ (one component of NO_x) is also a regulated pollutant. Since NO₂ is mostly formed from the transformation of NO in the atmosphere, it has mostly been of concern further downwind from large stationary point sources, and not a local concern from mobile sources (NO_x emissions from fuel combustion consist of approximately 90 percent NO and 10 percent NO₂ at the source). However, with the promulgation of the 2010 1-hour average standard for NO₂, local sources such as vehicular emissions may be of greater concern. The changes in NO₂ concentrations associated with this Project have not been analyzed explicitly due to limitations in guidance and modeling tools. However, any changes in NO₂ concentrations associated with the Project would be relatively small, as demonstrated below for CO and PM.

The Project would not involve the addition of any new stationary emission sources. Therefore, an analysis of potential local impacts on NO₂ concentrations was not warranted.

LEAD

Airborne lead emissions are currently associated principally with industrial sources. Lead in gasoline has been banned under the CAA and would not be emitted from any other component of the Project. Therefore, an analysis of this pollutant was not warranted.

RESPIRABLE PARTICULATE MATTER-PM10 AND PM2.5

PM is a broad class of air pollutants that includes discrete particles of a wide range of sizes and chemical compositions, as either liquid droplets (aerosols) or solids suspended in the atmosphere. The constituents of PM are both numerous and varied, and they are emitted from a wide variety of sources (both natural and anthropogenic). Natural sources include the condensed and reacted forms of naturally occurring VOC; salt particles resulting from the evaporation of sea spray; wind-borne pollen, fungi, molds, algae, yeasts, rusts, bacteria, and material from live and decaying plant and animal life; particles eroded from beaches, soil, and rock; and particles emitted from volcanic and geothermal eruptions and from forest fires. Naturally occurring PM is generally greater than 2.5 micrometers in diameter. Major anthropogenic sources include the combustion of fossil fuels (e.g., vehicular exhaust, power generation, boilers, engines, and home heating), chemical and manufacturing processes, all types of construction, agricultural activities, as well as wood-burning stoves and fireplaces. PM also acts as a substrate for the adsorption (accumulation of gases, liquids, or solutes on the surface of a solid or liquid) of other pollutants, often toxic, and some likely carcinogenic compounds.

As described below, PM is regulated in two size categories: particles with an aerodynamic diameter of less than or equal to 2.5 micrometers (PM_{2.5}) and particles with an aerodynamic diameter of less than or equal to 10 micrometers (PM₁₀, which includes PM_{2.5}). PM_{2.5} has the ability to reach the lower regions of the respiratory tract, delivering with it other compounds that adsorb to the surfaces of the particles and is also extremely persistent in the atmosphere. PM_{2.5} is mainly derived from combustion material that has volatilized and then condensed to form primary PM (often soon after the release from a source) or from precursor gases reacting in the atmosphere to form secondary PM.

All gasoline-powered and diesel-powered vehicles, especially heavy duty trucks and buses operating on diesel fuel, are a substantial source of respirable PM, most of which is PM_{2.5}. PM concentrations may, consequently, be locally elevated near roadways. Therefore, PM was included in the mobile source analysis.

SULFUR DIOXIDE

 SO_2 emissions are primarily associated with the combustion of sulfur-containing fuels (oil and coal). SO_2 is also of concern as a precursor to $PM_{2.5}$ and is regulated as a $PM_{2.5}$ precursor under the New Source Review permitting program for large sources. Due to the federal restrictions on the sulfur content in diesel fuel for on-road and non-road vehicles, no substantial quantities are emitted from vehicular sources. Vehicular sources of SO_2 are not substantial and therefore, analysis of SO_2 from mobile and/or non-road sources was not warranted.

Additionally, during construction, all on-site non-road engines would use ultra-low sulfur diesel (ULSD) fuel and emit insignificant amounts of SO₂. Therefore, analysis of SO₂ was not warranted.

NON-CRITERIA POLLUTANTS

In addition to the criteria pollutants discussed above, mobile source air toxics, or MSATs, are pollutants known to cause or are suspected of causing cancer or other serious health ailments. The CAA Amendments of 1990 listed 188 air toxics and addressed the need to control toxic emissions from transportation sources. USEPA identified nine compounds with substantial contributions from mobile sources that are among the national and regional-scale cancer risk drivers or contributors and non-cancer hazard contributors from the 2011 National Air Toxics Assessment (NATA).¹ These compounds are 1, 3-butadiene, acetaldehyde, acrolein, benzene, diesel particulate matter (diesel PM), ethylbenzene, formaldehyde, naphthalene, and polycyclic organic matter. While FHWA considers these the priority MSATs, the list is subject to change and may be adjusted in consideration of future USEPA rules.

LOCAL (MICROSCALE) ASSESSMENT

CO MICROSCALE SCREENING ANALYSIS

An assessment of the potential air quality effects of CO concentrations that would result from the Project was performed following the procedures outlined in the NYSDOT TEM. The assessment included a mobile source screening analysis to determine whether the Project would result in increased traffic volumes or implement any other changes (e.g., changes in speed, roadway width, sidewalk locations, or traffic signals) that may result in substantial increases in CO concentrations, thereby requiring further detailed analysis.

According to the screening procedures, if the Level of Service (LOS) in the two Build Alternatives is A, B, or C, no air quality analysis is required. For each intersection or corridor operating at LOS D or worse, the following "Capture Criteria" are applied to determine if an air quality analysis may be warranted:

- A 10 percent or more reduction in the distance between source and receptor; or
- A 10 percent or more increase in traffic volume on affected roadways for the Build Year; or
- A 10 percent or more increase in vehicle emissions for the Build Year; or
- Any increase in the number of queued lanes for the Build Year (this applies to intersections); or
- A 20 percent reduction in speed when average speeds are below 30 miles per hour (mph).

¹ https://www.epa.gov/national-air-toxics-assessment/2011-national-air-toxics-assessment

Appendix G: Air Quality

If a project does not meet any of the above criteria, a microscale analysis is not required. Should any one of the above Capture Criteria be met, a Volume Threshold Screening is performed using traffic volume and emission factor data to compare with specific volume thresholds established in TEM. The Volume Thresholds (provided in the TEM) establish traffic volumes under which a violation of the NAAQS for CO is extremely unlikely. This approach uses region-specific emissions data to determine corresponding vehicle thresholds.

Both the Capture Criteria and Volume Threshold Screening were developed by NYSDOT to be conservative air quality estimates based on worst-case assumptions. TEM states that if the projectrelated traffic volumes are below the Volume Threshold criteria, then a microscale air quality analysis is unnecessary even if the other Capture Criteria are met for a location with LOS D or worse, since a violation of the NAAQS would be extremely unlikely.

VEHICLE EMISSIONS

Engine Emissions

Vehicular CO and PM (including brake wear and tire wear) emission factors for Onondaga County were computed using the USEPA mobile source emissions model, MOVES2014a (the model in effect at the time of the analysis).² This emissions model is capable of calculating emission factors for various parameters relating to the on-road vehicles and the regional conditions. The model was run using a project level domain and took into consideration vehicle types, based on the fuel type (gasoline, diesel, or natural gas), meteorological conditions, vehicle speeds, vehicle age, roadway types, roadway grade, number of starts per day, engine soak time, and various other factors that influence emissions, such as inspection and maintenance programs. The inputs and use of MOVES2014a incorporate the most current guidance available from NYSDEC.

Vehicle classification data were based on data obtained from the results described in the traffic study (see **Chapter 5, Transportation and Engineering Considerations**). Appropriate credits were used to accurately reflect the inspection and maintenance programs.³ County-specific hourly temperature and relative humidity data obtained from NYSDEC were used.

Road Dust

The contribution of re-entrained road dust to PM_{10} concentrations, as presented in the PM_{10} SIP, is considered to be substantial; therefore, the PM_{10} estimates include exhaust, brake wear, tire wear, and road dust. Road dust emission factors were calculated according to the latest procedure delineated by USEPA.⁴ Road dust is not a substantial contributor to $PM_{2.5}$ in New York State. Thus, based on USEPA guidance, road dust was not included in the $PM_{2.5}$ microscale analysis.

TRAFFIC DATA

Vehicle classification data were based on field studies. Traffic data for the air quality analysis were derived from existing traffic counts, projected future growth in traffic, and other information

² USEPA. Motor Vehicle Emission Simulator (MOVES): User Guide for MOVES2014a. EPA420B15095. November 2015.

³ The inspection and maintenance programs require inspections of automobiles and light trucks to determine if pollutant emissions from each vehicle exhaust system are lower than emission standards. Vehicles failing the emissions test must undergo maintenance and pass a repeat test to be registered in New York State.

⁴ USEPA. *Compilations of Air Pollutant Emission Factors AP-42.* Fifth Edition, Volume I: Stationary Point and Area Sources, Ch. 13.2.1. NC. http://www.epa.gov/ttn/chief/ap42. January 2011.

developed as part of the traffic analysis for the proposed project (see **Chapter 5, Transportation and Engineering Considerations**). Traffic data for the future No Build and Build alternatives were used for the respective air quality modeling scenarios.

For the PM_{2.5} and PM₁₀ analyses, 24-hour data is required. The traffic volumes from the morning and evening peak periods were used as a baseline for determining volumes throughout the day. Off-peak traffic volumes were determined by adjusting the peak period volumes by the 24-hour distributions of actual vehicle counts collected at appropriate locations. Emissions modeling using MOVES2014a were conducted for four representative time periods (morning, midday, evening, and overnight) to cover a 24-hour period. While studies considered in the updates to the MOVES model suggest that there is little impact of temperature on running PM emissions for newer vehicles,⁵ emission rates for four representative months (one for each season) were run, and the maximum emission rates were used for the entire year for the analysis.

DISPERSION MODEL FOR PM MICROSCALE ANALYSIS

Maximum contributions from vehicular emissions to PM concentrations adjacent to each analysis site were calculated using CAL3QHCR, a refined version of the CAL3QHC model Version 2.0.⁶ This refined version of the model can utilize hourly traffic and meteorology data, and is more appropriate for calculating the 24-hour and annual average concentrations required to address the timescales of the PM NAAQS.

METEOROLOGY

In general, the transport and concentration of pollutants from vehicular sources are influenced by three principal meteorological factors: wind direction, wind speed, and atmospheric stability. Wind direction influences the direction in which pollutants are dispersed and atmospheric stability accounts for the effects of vertical mixing in the atmosphere. These factors, therefore, influence the concentration at a particular receptor location. The meteorological data set consisted of five consecutive years of the latest available meteorological data: surface data collected at the nearest representative National Weather Service Station (Syracuse Hancock International Airport) from 2011 to 2015 and concurrent upper air data collected at the nearest station in Albany, NY.

ANALYSIS YEAR

The PM microscale analysis for operational effects was performed for the critical analysis year, 2026. The critical year analysis was based on the estimated time of completion, year 2026, and future year 2056. Vehicular emission rates projected by the MOVES2014a model would be greatest in earlier years, and outweigh the projected growth in traffic volumes for the later analysis year (2056). The analysis was performed both without the Project (the No Build Alternative) and with the Project (either of the Build Alternatives).

ANALYSIS SITES

Intersections in the project area where traffic data were developed, as described in **Chapter 5**, **Transportation and Engineering Considerations**, were reviewed for the PM microscale analysis

⁵ USEPA. Emission Adjustments for Temperature, Humidity, Air Conditioning, and Inspection and Maintenance for On-road Vehicles in MOVES2014. EPA420R14012.

⁶ USEPA. User's Guide to CAL3QHC, A Modeling Methodology for Predicted Pollutant Concentrations Near Roadway Intersections. EPA454R92006.

for operational effects based on locations of high volumes, high traffic increments between No Build and each alternative, the greatest decrease in average travel speeds, and proximity to sensitive receptors. The traffic volumes for the AM and PM periods were reviewed and intersections with high volumes were identified. Of those intersections, four were selected for the microscale analysis (see **Table G-2**). The potential effects from vehicle emissions of PM₁₀ and PM_{2.5} were analyzed at each site.

	I IVI IVIICI OBCUIC I II	narysis bites (Operational Effects)
Analysis Site	Location	Alternatives Analyzed
1	Crouse Avenue and Erie Boulevard	No Build, Viaduct, and Community Grid
2	West Street and Erie Boulevard	No Build, Viaduct, and Community Grid
3	Almond Street and Harrison Street	No Build, Viaduct, and Community Grid
4	State Street and Erie Boulevard	No Build and Community Grid

	I adle	G-2
PM Microscale Analysis Sites (Operation	nal Effe	ects)

RECEPTOR PLACEMENT

Multiple receptors where the highest pollutant concentrations are expected were modeled at each of the selected sites. Receptors were placed along the approach and departure links and roadway segments at 7.6-meter intervals within approximately 23 meters of the intersections, and at 25-meter intervals along the remainder of the roadway links in the modeled extents (see **Figures G-1 through G-11**). Due to the presence of elevated roadways, receptors were also placed at elevated residential locations.

REGIONAL (MESOSCALE) ASSESSMENT

Mesoscale emissions were evaluated for the No Build, Viaduct, and Community Grid Alternatives.

The emissions were estimated using the projected vehicle miles traveled (VMT) reported in Chapter 5, Transportation and Engineering Considerations. Emission factors in grams per mile for criteria pollutants on both restricted roadways (i.e., expressways, freeways, and interstates) and unrestricted roadways (local roads) were obtained using the MOVES2014a model. Emission factors obtained from the MOVES2014a model for Onondaga County were calculated on a county level scale and summarized by vehicle type and speed for running exhaust (for engine and crankcase), brakewear, tirewear, evaporative permeation, evaporative fuel vapor venting, and evaporative fuel leaks where appropriate by pollutant. The average vehicle speeds and vehicle classifications for the AM and PM peak periods projected in the regional transportation analysis described in Chapter 5, Transportation and Engineering Considerations, were used to calculate emission factors along individual roadway segments. The modeled roadways consists of the area where a shift in local traffic using alternate routes could occur as a result of the reconstruction or removal of the I-81 viaduct. The roadway segments include the I-81, I-690, I-481, and I-90 interstate systems and surface streets that could be affected by the project. The modeled traffic network extents extend south to East Castle/Stratford Streets, north to Hiawatha Boulevard, west to South West Street, and east to Westcott Street (see Figure 1 of Appendix C-2).

Daily emissions were developed by multiplying the average projected daily traffic volumes of individual segments in the modeled area by the length of each modeled segment and the calculated emission factors. Regional emissions associated with the Project were then projected as the summation of all roadway emissions within the study area.

Figure G-1 Source & Receptor Diagram—No Build Alternative Crouse Avenue & Erie Boulevard

Figure G-2 Source & Receptor Diagram—Viaduct Alternative Crouse Avenue & Erie Boulevard

Figure G-3 Source & Receptor Diagram—Community Grid Alternative Crouse Avenue & Erie Boulevard

Figure G-4 Source & Receptor Diagram—No Build Alternative West Street & Genesee Street

Figure G-5 Source & Receptor Diagram—Viaduct Alternative West Street & Genesee Street

Figure G-6 Source & Receptor Diagram—Community Grid Alternative West Street & Genesee Street

Figure G-7 Source & Receptor Diagram—No Build Alternative Almond Street & Harrison Street

Figure G-8 Source & Receptor Diagram—Viaduct Alternative Almond Street & Harrison Street

Figure G-9 Source & Receptor Diagram—Community Grid Alternative Almond Street & Harrison Street

Figure G-10 Source & Receptor Diagram—No Build Alternative State Street & Erie Boulevard

Figure G-11 Source & Receptor Diagram—Community Grid Alternative State Street & Erie Boulevard

CONSTRUCTION EFFECTS ASSESSMENT

Emissions from on-site construction equipment, on-road construction-related vehicles, diverted traffic during construction, and dust-generating construction activities have the potential to affect air quality. In general, much of the heavy equipment used in construction is powered by diesel engines that have the potential to produce relatively high PM emissions. Fugitive dust generated by construction activities is also a source of PM. Gasoline engines produce relatively high levels of CO. Since USEPA mandates the use of ultra-low sulfur diesel (ULSD) fuel for all highway and non-road diesel engines, SOx emitted from the Project's construction activities would be negligible. Therefore, the pollutants to be analyzed for the construction period are PM₁₀, PM_{2.5}, and CO. The analysis of potential construction air quality effects includes both on-site and on-road sources of air emissions, where applicable.

ON-SITE CONSTRUCTION ACTIVITY ASSESSMENT

The Martin Luther King, Jr. East (MLK, Jr. East) area was selected for the on-site air quality analysis because of the proximity of construction activities to a number of sensitive receptor locations there, including the Dr. King Elementary School, the State University of New York College of Environmental Science and Forestry, the Tucker Missionary Baptist Church, and several residential buildings (see **Figure G-12**). This location represents a reasonable-worst case scenario for the analysis. The dispersion analysis included modeling of the worst-case annual and short-term (i.e., 24-hour, 8-hour, and 1-hour) averaging periods. Other areas in the project corridor were not modeled but are discussed qualitatively, based on the reasonable worst-case analysis results.

Engine Emissions

The sizes, types, and number of units of construction equipment were estimated based on the construction activity schedule developed for the Project (see **Chapter 4, Construction Means and Methods**). Emission factors for CO, PM₁₀, and PM_{2.5} from on-site construction engines were developed using USEPA's NONROAD2008 emission model (NONROAD).⁷ Emission rates from truck engines were developed using the MOVES2014a emission model. Emission rates for the daily and annual periods were estimated by multiplying peak emissions factors by daily and annual usage factors.

On-Site Fugitive Dust

In addition to engine emissions, fugitive dust emissions from operations (e.g., excavation and transferring of excavated materials into dump trucks) were calculated based on USEPA procedures in AP-42 Table 13.2.3-1.⁸ In accordance with the NYSDOT Engineering Instruction 17-006, §107-11 Air Quality Protection, a dust control plan would be implemented during the construction of the project. Measures that could be included in a dust control plan include requiring trucks that are hauling loose material to be equipped with tight-fitting tailgates and have their loads securely covered prior to leaving the project site; and the use of water sprays for demolition, excavation, and transfer of soils to ensure that materials would be dampened as necessary to avoid the suspension of dust into the air. These measures would effectively reduce PM emissions from dust-generating construction activities.

⁷ https://www.epa.gov/moves/nonroad-model-nonroad-engines-equipment-and-vehicles – "NONROAD2008 has been incorporated into MOVES2014 and MOVES2014a. USEPA recommends using MOVES2014a if you are having problems installing or using NONROAD2008 on never operating systems."

⁸ EPA Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: *Stationary Point and Area Sources*, Section 1.3, Table 1.3-1.

Figure G-12 Source & Receptor Diagram—Construction

Appendix G: Air Quality

Dispersion Modeling

Potential effects from construction sources were evaluated using the USEPA/AMS AERMOD dispersion model. AERMOD is a state-of-the-art dispersion model, applicable to rural and urban areas, flat and complex terrain, surface and elevated releases, and multiple sources (including point, area, and volume sources). AERMOD is a steady-state plume model that incorporates current concepts about flow and dispersion in complex terrain and includes updated treatments of the boundary layer theory, understanding of turbulence and dispersion, and handling of terrain interactions.

Source Simulation

As discussed above, the MLK, Jr. East area was selected for the on-site air quality analysis because of the proximity of construction activities to several sensitive receptor locations. For short-term model scenarios (predicting concentration averages for periods of 24 hours or less), all stationary sources, such as cranes or concrete trucks, which idle in a single location while unloading, were simulated as point sources. Other engines, such as excavators that move around the site on any given day, were simulated as area sources. For periods of eight hours or less (less than the length of a shift), it was assumed that all engines would be active simulated as area sources in the annual analysis. Sources were assumed to be operating during a typical 8-hour construction workday (i.e., from 7 AM to 3 PM) and 5 days per week in the dispersion model, consistent with the assumption presented in **Chapter 4, Construction Means and Methods**.

Background Concentrations

To estimate the maximum expected total pollutant concentrations, the calculated concentrations from the emission sources were added to a background value that accounts for existing pollutant concentrations from other sources. The background levels are based on concentrations monitored at the nearest ambient air monitoring stations (see **Table G-3**).

-	Representative Monitor	eu Ampient An	Quality Data
Pollutant	Location	Averaging Period	Concentration
PM _{2.5}	Fact Syracusa, Opendage	24-hour	13.5 µg/m³
F 1VI2.5	East Syracuse, Onondaga	Annual	5.6 µg/m³
PM10	Rochester 2, Monroe	24-hour	33.0 µg/m ³
со	Deebester Neer Deed Manroe	1-hour	1.6 ppm
00	Rochester Near Road, Monroe	8-hour	0.7 ppm
Source: N	YSDEC, New York State Ambient Air (Quality Report (2014–20	18).

Table G-3	3
Representative Monitored Ambient Air Quality Data	a

Meteorological Data

The meteorological data set consisted of five consecutive years of latest available meteorological data: surface data collected at the nearest representative National Weather Service Station (Syracuse Hancock International Airport) from 2011 to 2015 and concurrent upper air data collected at Albany, NY, the nearest upper air monitoring station. The meteorological data provide hour-by-hour wind speeds and directions, stability states, and temperature inversion elevation over the five-year period. These data were processed using the USEPA AERMET program to develop data in a format that could be readily processed by the AERMOD model.

Receptor Locations

Receptors were placed at locations that would be publicly accessible, at residential and other sensitive uses, such as schools, at both a ground-level pedestrian height of 1.8 meters, and elevated locations at a height of 6.1 meters (e.g., windows of residences) with a minimum distance of 2.1 meters from emission sources (i.e., roadways and areas of construction) at each analysis location. In addition, a ground-level receptor grid extending one kilometer from the construction sources was established.

Analysis Year

The highest emissions were predicted for 2018 when demolition, superstructure, and earthworks activities would overlap and that there would be an increasing percentage of in-use newer and cleaner vehicles and engines for construction in future years.

CONSTRUCTION-RELATED TRAFFIC DIVERSIONS

During construction of the Project, various connectors and ramps are expected to be closed at times. A shift in the traveling pattern due to temporary ramp and highway closures would increase traffic volumes at some local intersections, potentially increasing pollutant concentrations at those locations. Therefore, microscale analyses were performed to assess the effect of the traffic diversion on air quality.

Potential air quality effects associated with the traffic diversions that are expected to occur during construction activities were analyzed for PM₁₀ and PM_{2.5} at MLK, Jr. East at the southbound I-81 onramp and MLK, Jr. East at the northbound I-81 off-ramp due the highest projected volume increase expected at this ramp location (see **Figure G-12**). The proximity to sensitive receptors at this location was also considered. Traffic diversions were analyzed for Phase 3 (see **Chapter 4, Construction Means and Methods**), during the closure of I-81 between MLK, Jr. East and Butternut Street. Additionally, construction activities would generate both worker automobile trips and construction truck trips.

COMBINED IMPACT

Since emissions from both on-site construction equipment and construction-related traffic diversion may contribute to concentrations concurrently at the same location, the combined effect was assessed where applicable. Roadway links were added to the construction AERMOD dispersion model alongside the on-site construction sources. Traffic conditions, volumes, and roadway locations from the mobile source analysis of construction-related traffic diversions were used for the combined modeling and were assumed to occur throughout the construction period.

D. EXISTING CONDITIONS

Pollutant levels measured at area monitoring stations are used to characterize existing conditions. Concentrations of relevant regulated pollutants at monitoring stations closest to the project area are shown in **Table G-4**. These values are the most recent data available at the time the analyses for this Project were undertaken, and are consistent with the background conditions used in the future conditions analyses (see below). As shown in the table, the monitored levels do not exceed the NAAQS.

	Reg	oresenta	ative Monitored A	Ambient Air Qua	ality Data
Pollutant	Location	Units	Averaging Period	Concentration	NAAQS
СО	Rochester Near Road,		1-hour	1.6	35
00	Monroe	ppm	8-hour	0.7	9
SO ₂	East Syracuse, Onondaga	nnh	1-hour ⁽¹⁾	2.33	75
302	East Syracuse, Onondaga	ppb	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	500	
PM ₁₀	Rochester 2, Monroe	µg/m³	24-hour	33.0	150
PM _{2.5}	East Syracuse, Onondaga	µg/m³	24-hour ⁽³⁾	13.5	35
F IVI2.5	East Syracuse, Onondaga	µg/m²	Annual	Concentration 1.6 0.7 2.33 10.2 33.0 13.5 5.6 49.20 9.81 0.004	12
NO ₂	Buffalo, Erie	nnh	1-hour ⁽⁴⁾	49.20	100
NO ₂	Bullaio, Ene	ppb	Averaging Period Concentration 1-hour 1.6 8-hour 0.7 1-hour ⁽¹⁾ 2.33 3-hour ⁽²⁾ 10.2 3 24-hour 33.0 3 24-hour ⁽³⁾ 13.5 Annual 5.6 1-hour ⁽⁴⁾ 49.20 Annual 9.81 3 3-month 0.004	53	
Lead	Rochester 2, Monroe	µg/m³	3-month	0.004	0.15
Ozone	East Syracuse, Onondaga	ppm	8-hour	0.065	0.070
Notoci					

Table G-4

Notes:

⁽¹⁾ The 1-hour value is based on a three-year average (2016–2018) of the 99th percentile of daily maximum 1-hour average concentrations. USEPA replaced the 24-hr and the annual standards with the 1-hour standard.

⁽²⁾ The 3-hour value is based on the maximum three-hour average concentration in 2011–2012, the latest years of reported 3-hour concentrations.

⁽³⁾ The 24-hour value is based on a three-year average (2016–2018) of the 98th percentile of 24-hour average concentrations.

(4) The 1-hour value is based on a three-year average (2014–2018) of the 98th percentile of daily maximum 1-hour average concentrations.

Source: NYSDEC, New York State Ambient Air Quality Report (2014-2018).

E. NO BUILD ALTERNATIVE

Under the No Build Alternative, the existing roadways would remain with only routine maintenance and minor repairs. No new roadways or associated supporting infrastructure would be constructed. Emissions would continue to be emitted from existing sources including on-road emissions in the project area. Construction emissions associated with the project would not occur, but emissions associated with maintenance of aging roadway facilities would increase. An assessment of the No Build Alternative was performed for comparison to the Viaduct and Community Grid Alternatives.

F. VIADUCT ALTERNATIVE

MICROSCALE ANALYSIS

CO MICROSCALE SCREENING ANALYSIS

LOS Screening Analysis

Based on the review of the intersections analyzed for the Transportation analysis (see Chapter 5, Transportation and Engineering Considerations), 24 and 19 intersections were projected to operate at a LOS D or worse during one or both of the peak traffic periods analyzed in the 2026 and 2056 analysis years, respectively.

Capture Criteria Screening Analysis

The capture criteria screening analysis indicated that there would be a 10 percent or more increase in traffic volume or 20 percent or more decrease in speed on affected roadways for the Viaduct Alternative at 24 and 19 of the intersections for the two analysis years, respectively, requiring a Volume Threshold Screening analysis at these locations.

Volume Threshold Screening

The results of the LOS screening, capture criteria, and volume threshold screening analyses are included as an attachment to this appendix. The highest Build peak hour traffic volume at these locations was projected to be 1,807 at the northbound approach of Almond Street and Harrison Street, which is below the Volume Threshold criteria of 3,800 vehicles in the peak hour. This was determined by comparing the associated emission factor of 8.65 grams per mile (cruise emission factor) and 9.77 grams per hour (idle emission factor), developed from MOVES2014a based on speed and vehicle mix, to Table 3C of the TEM. Therefore, a CO microscale dispersion modeling was not warranted for all of the intersections for the Viaduct Alternative. The Viaduct Alternative would not increase traffic volumes, reduce source-receptor distances, or change other existing conditions to such a degree as to jeopardize attainment of the CO NAAQS.

PARTICULATE MATTER (PM) MICROSCALE ANALYSIS

PM concentrations for the critical analysis year 2026 would be below the NAAQS at all analysis sites. Due to improved speeds at Site 1, the maximum concentration at this site is projected to decrease when compared with the No Build Alternative. The receptor locations where maximum predicted concentrations are anticipated to occur are identified in **Figures G-1** through **G-11**. While specific locations vary by time period and pollutant, the maximum predicted concentrations generally occur at an intersection of roadways where the effects of both roadways would be observed.

PM _{2.5} and PM ₁₀ Maximum Predicted Concentrations at Analysis Sites (µg/m ³)								
Analysis Site	Pollutant	Averaging Period	No Build Total Concentration	Viaduct Alternative Total Concentration	NAAQS			
Site 1: Crouse Avenue and	PM10	24-Hour	43.0	40.5	150			
Burnet Avenue to Crouse	PM _{2.5}	24-Hour	14.5	14.4	35			
Avenue and Erie Boulevard	F IVI2.5	Annual	5.9	5.9	12			
Site 2: N. West Street and	PM ₁₀	24-Hour	42.7	42.0	150			
Site 2: N. West Street and W. Genesee Street	PM _{2.5}	24-Hour	14.8	14.9	35			
W. Genesee Street	P1VI2.5	Annual	6.3	6.0	12			
Cite 2: Almond Street and	PM ₁₀	24-Hour	82.7	92.4	150			
Site 3: Almond Street and Harrison Street	PM ₂₅	24-Hour	16.7	17.6	35			
Transon Street	F IVI2.5	Annual	6.6	7.3	12			

Table G-5

Notes:

PM₁₀ background concentration, 36.5 μg/m³, was based on 2014–2016 data at the Rochester 2 monitoring station.
PM_{2.5} background concentrations for 24-hour and annual PM_{2.5} (14.3 and 6.1 μg/m³, respectively) were based on 2014–2016 data at the East Syracuse monitoring station.

MESOSCALE ANALYSIS

A mesoscale emissions analysis for CO, VOC, NO_x, and PM was conducted in accordance with TEM using the USEPA mobile source emissions model, MOVES2014a, and the results of the regional traffic modeling conducted for the Viaduct Alternative. The study area used for the regional traffic modeling, which includes a network of interstate segments, ramp connections, and intersections that span the county and incorporate planned transportation projects in the No Build Alternative and the Viaduct Alternative, was used as the study area for the mesoscale analysis (see **Chapter 5**, **Transportation and Engineering Considerations for traffic information**). The modeled roadways consist of the area where a shift in local traffic using alternate routes could occur as a result of the reconstruction or removal of the I-81 viaduct. The modeled traffic network extents are shown in **Figure 1** of **Appendix C-2**. The mesoscale analysis was conducted for the analysis years 2026 and

2056. The mesoscale analysis used estimated annual vehicle miles traveled (VMT) by vehicle type and speed-based emission rates by link that were specific to each alternative.

The projected vehicle miles traveled (VMT) and the mesoscale emissions associated with traffic conditions under the Viaduct Alternative are shown in **Table G-6**. As described in **Chapter 5**, **Transportation and Engineering Considerations**, traffic volumes in the Viaduct Alternative would be higher on I-81 compared with the No Build condition because additional traffic would be attracted to I-81 in response to improvements introduced under the Viaduct Alternative. Shifts in traffic volumes would occur between local streets and parallel highway segments, due to the operational improvements, new interconnect ramps between routes, and changes to existing ramps.

Table G-6

Analysis				Tons	per Year		
Year	Alternative	Annual VMT	CO	NOx	VOC	PM ₁₀	PM _{2.5}
	No Build	3,796,753,177	12,033.6	1,746.5	340.2	95.6	255.3
	Viaduct	3,789,038,105	10,892.9	1,576.0	280.6	79.8	190.4
2026	Difference	1,284928	-1,140.6	-170.6	-59.6	-15.8	-64.9
		(0.03%)	(-9%)	(-10%)	(-18%)	(-17%)	(-25%)
	No Build	3,988,571,639	3,873.2	352.9	113.7	33.0	193.0
2056	Viaduct	3,997,227,337	3,576.7	306.4	90.5	24.3	133.3
2000	Difference	8,655,698	-296.5	-46.5	-23.2	-8.7	-59.7
		(0.22%)	(-8%)	(-13%)	(-20%)	(-26%)	(-31%)

Criteria Pollutant Emissions in the No Build and Viaduct Alternatives

Compared to the No Build Alternative, in all analysis years, the Viaduct Alternative would result in lower emissions of all other modeled criteria pollutants. The improvements in travel speed and the predicted shift in traffic between roadway and the associated traffic conditions would result in a percent decrease in annual emissions between the No Build and Viaduct Alternative much larger than the percent increase in VMT. Total emissions in 2056 would also be substantially lower than emissions in earlier years due to continued turnover of the fleet to lower emissions vehicles.

The regional emissions would decrease overall for all of the pollutants analyzed from transportation sources. The changes in emissions between the No Build and the Viaduct Alternatives are driven by three inputs—slight increases in annual VMT, changes to traffic conditions between the alternatives (i.e., travel speed, and vehicle classification) on individual road segments, and the analysis year which (would determine fleet-wide average per vehicle-mile emission rates for both Alternatives). In all analysis years, the improvements in travel speed and the predicted shift in traffic between roadway and the associated traffic conditions would result in a percent decrease in annual emissions between the No Build and Viaduct Alternative much larger than the percent increase in VMT.

MOBILE SOURCE AIR TOXICS (MSATS) ANALYSIS

FHWA's updated interim guidance includes a tiered approach for addressing MSATs for the purpose of NEPA. According to this guidance, design-year AADT projections less than 140,000 to 150,000 are considered to have low potential for MSAT effects and qualitative assessments are recommended. Since the purpose of the I-81 Viaduct Project is, in part, to address structural and operational deficiencies and improve access and connections within and through the I-81 corridor of the Project Area (see **Chapter 1, Introduction**, for full project purpose), the overall increase in traffic volumes is not expected to be substantial, with additional traffic on I-81 but a decrease in traffic on some local streets and parallel routes. However, the highest forecasted AADT in study area for the Viaduct

Alternative is 99,533 (see **Appendix C, Attachment C**; I-81: Segment 11) is well below the FHWA criteria for a quantitative analysis. Therefore, a qualitative assessment was conducted for this Project, in accordance with FHWA's guidance.

MSAT emissions would be proportional to the VMT of the No Build and Viaduct Alternatives for a given year when variables such as fleet mix remain similar for each alternative. Since the estimated VMT under the No Build and Viaduct Alternatives varies by less than 1 percent for both the ETC year 2026 and 2056 (ETC+30), as shown in Table 6-4-4-5, it is expected there would be no appreciable difference in overall MSAT emissions among the alternatives in either analysis year. In locations where traffic volumes are predicted to increase or where new, expanded, or elevated roadway sections would be located closer to nearby residences, schools, and businesses, there may be localized areas of increased ambient concentrations of MSATs. The Viaduct Alternative would locate roadway segments closer to sensitive receptors adjacent to the segment of southbound I-81 between the entrance ramp from I-690 and Harrison Street when compared to the No Build Alternative. Under both alternatives, overall future MSAT emissions are expected to be substantially lower than under existing conditions due to implementation of USEPA's vehicle and fuel regulations.

In general, information is incomplete or unavailable to credibly predict the project-specific health impacts due to changes in MSAT emissions. In order to determine the potential for significant adverse impacts, multiple levels of modeling must be performed (emissions, dispersion, exposure, etc.) with each subsequent model building on the predictions and assumptions of the previous model. Furthermore, there are considerable uncertainties associated with the existing estimates of toxicity of the various MSAT, because of factors such as low-dose extrapolation and translation of occupational exposure data to the general population.⁹ Due to these limitations described, any predicted potential for significant impact is likely to be much smaller than the uncertainties associated with the assumption made to predict the impacts.

CONSTRUCTION EFFECTS

Emissions from on-site construction equipment, on-road construction-related vehicles, diverted traffic during construction, and dust-generating construction activities have the potential to affect air quality. The potential effects of these activities on air quality are discussed in this section.

Construction of the Viaduct Alternative is anticipated to take six years to complete. An analysis was conducted to assess the effects of on-site construction activities on the surrounding community. Based on the CO screening methodologies used for the operational traffic analysis, it was determined that a microscale air quality analysis for CO is not warranted. However, to address concerns expressed from the public regarding PM air quality in the vicinity of I-81 during construction, a microscale detour traffic analysis was conducted. Traffic would be disrupted during the construction period, but detours/diversions are not expected to last more than three weeks in any one location (see **Chapter 4, Construction Means and Methods**). Therefore, in accordance with the NYSDOT's TEM, a mesoscale emissions analysis for construction traffic detours/diversions is not warranted.

ON-SITE CONSTRUCTION ACTIVITY

In general, much of the heavy equipment used in construction is powered by diesel engines that have the potential to produce relatively high PM emissions. Fugitive dust generated by construction activities is also a source of PM. In addition, gasoline engines produce relatively high levels of CO.

⁹ Health Effects Institute. Special Report 16, "https://www.healtheffects.org/publication/mobile-source-air-toxics-criticalreview-literature-exposure-and-health-effects"

Since USEPA mandates the use of ultra-low sulfur diesel (ULSD) fuel for all highway and non-road diesel engines,¹⁰ SO₂ emitted from the Project's construction activities would be negligible. Therefore, the three primary air pollutants of concern for construction activities are PM₁₀, PM_{2.5}, and CO.

The Martin Luther King, Jr. East (MLK, Jr. East, formerly East Castle Street) area was selected for the on-site air quality analysis because of the proximity of construction activities to a number of sensitive receptor locations there, including the Dr. King Elementary School, the State University of New York College of Environmental Science and Forestry, the Tucker Missionary Baptist Church, and a number of residential buildings. This location therefore represents a reasonable worst-case scenario for the analysis. The dispersion analysis included modeling of the worst-case annual and short-term (i.e., 24-hour, 8-hour, and 1-hour) averaging periods. Other areas in the Project corridor were not modeled, but are discussed qualitatively, based on the reasonable worst-case analysis results.

The following are the key factors and assumptions used for this analysis:

- Engine Emissions: The sizes, types, and number of units of construction equipment were estimated based on the construction activity schedule anticipated for the Project (see Chapter 4, Construction Means and Methods). Emission factors for CO, PM₁₀, and PM_{2.5} from on-site construction engines were developed using the USEPA NONROAD2008 emission model (NONROAD).¹¹ Emission rates from truck engines were developed using the MOVES2014a emission model.
- **On-site Fugitive Dust:** In addition to engine emissions, fugitive dust emissions from operations (e.g., excavation and transferring of excavated materials into dump trucks) were calculated based on USEPA procedures in AP-42 Table 13.2.3-1.¹² In accordance with NYSDOT specifications in order to minimize and mitigate the adverse effects of construction activities on the community, it will be required (see **Table 4-7** of **Chapter 4, Construction Means and Methods)** that a dust control plan would be developed by the contractor and implemented during the construction of the Project. Measures that could be included in a dust control plan include requiring trucks that are hauling loose material to be equipped with tight-fitting tailgates and have their loads securely covered prior to leaving the Project site and the use of water sprays for demolition, excavation, and transfer of soils to ensure that materials would be dampened as necessary to avoid the suspension of dust into the air. These measures would effectively reduce PM emissions from dust-generating construction activities.
- **Dispersion Modeling:** Potential effects from construction sources were evaluated using the USEPA/AMS AERMOD, a refined dispersion model. AERMOD is a state-of-the-art dispersion model, applicable to rural and urban areas, flat and complex terrains, surface and elevated releases, and multiple sources (including point, area, and volume sources). AERMOD is a steady-state plume model that incorporates current concepts about flow and dispersion in complex terrain

¹⁰ USEPA required a major reduction in the sulfur content of diesel fuel intended for use in locomotive, marine, and non-road engines and equipment, including construction equipment. As of 2015, the diesel fuel produced by all large refiners, small refiners, and importers must be ULSD fuel. Levels in non-road diesel fuel are limited to a maximum of 15 parts per million.

¹¹ https://www.epa.gov/moves/nonroad-model-nonroad-engines-equipment-and-vehicles "NONROAD2008 has been incorporated into MOVES2014 and MOVES2014a. USEPA recommends using MOVES2014a if you are having problems installing or using NONROAD2008 on newer operating systems."

¹² USEPA Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Section 1.3, Table 1.3-1.

and includes updated treatments of the boundary layer theory, understanding of turbulence and dispersion, and handling of terrain interactions.

- Source Simulation: As discussed above, the MLK, Jr. East area was selected for the on-site air quality analysis because of the proximity of construction activities to a number of sensitive receptor locations. For short-term model scenarios (predicting concentration averages for periods of 24 hours or less), all stationary sources, such as cranes and pile hammers, which idle in a single location while unloading, were simulated as point sources. Point sources were conservatively modeled at a single location throughout the year to capture the maximum potential short-term concentrations. Other engines, such as excavators and loaders that would move around the site on any given day, were simulated as area sources. For periods of eight hours or less, it was assumed that all engines would be active simultaneously. All sources are anticipated to move around the site throughout the year and were therefore simulated as area sources in the annual analysis. Sources were assumed to be operating during a typical 8-hour construction workday (i.e., from 7 AM to 3 PM) in the dispersion model, consistent with the assumption presented in **Chapter 4, Construction Means and Methods**.
- **Meteorological Data:** The meteorological data set consisted of five consecutive years of latest available meteorological data: surface data collected at the nearest representative National Weather Service Station (Syracuse Hancock International Airport) from 2011 to 2015 and concurrent upper air data collected at Albany, NY, the nearest upper air monitoring station. The meteorological data provide hour-by-hour wind speeds and directions, stability states, and temperature inversion elevation over the five-year period. These data were processed using the USEPA AERMET program to develop data in a format that could be readily processed by the AERMOD model.
- **Background Concentrations:** To estimate the maximum expected total pollutant concentrations, the calculated concentrations from the construction emission sources were added to a background value that accounts for existing pollutant concentrations from other sources. The background levels are based on concentrations monitored at the nearest ambient air monitoring stations (see **Table G-2**).
- **Receptor Locations:** Receptors were placed at locations that would be publicly accessible, at residential and other sensitive uses, such as schools, at both ground-level and elevated locations (e.g., windows of residences). In addition, a ground-level receptor grid extending one kilometer from the construction sources was established.
- Analysis Year: The highest emissions were predicted for 2018 when demolition, superstructure, and earthworks activities would overlap. There would be an increasing percentage of in-use newer and cleaner vehicles and engines for construction in future years.

Maximum predicted concentrations (including background) from peak construction activities under the Viaduct Alternative are presented in **Table G-7**. As shown, total maximum concentrations from the on-site sources are predicted to be lower than the corresponding NAAQS for PM_{2.5}, PM₁₀, and CO. The modeled results for the 2018 analysis year are based on construction activities at the reasonable worst-case location in the MLK, Jr. East area where sensitive receptor locations are near on-site construction activities. Lower concentration increments from construction would be expected at other locations in the study area since activities would generally be located farther away from sensitive receptor locations.

Table G-7 Maximum Predicted Pollutant Concentrations from On-Site Construction Activity for the Viaduct Alternative

Pollutant	Averaging Period	Background	Concentration Increment from On-Site Construction Activity	Total	NAAQS			
PM _{2.5}	24-hour	13.5 µg/m ³	4.9 μg/m ³	18.4 µg/m³	35 µg/m ³			
	Annual	5.6 µg/m³	0.3 μg/m ³	5.9 µg/m³	12 µg/m ³			
PM ₁₀	24-hour	33.0 µg/m ³	5.2 μg/m ³	38.2 µg/m³	150 µg/m ³			
CO	1-hour	1.6 ppm	10.5 ppm	12 ppm	35 ppm			
	8-hour	0.7 ppm	2.6 ppm	3.3 ppm	9 ppm			

COMBINED EFFECT

monitoring station.

Since emissions from both on-site construction equipment and construction-related traffic diversions may contribute to concentrations concurrently at the same location, the combined effect was assessed where applicable. Roadway links were added to the construction AERMOD dispersion model alongside the on-site construction sources. Traffic conditions, volumes, and roadway locations from the mobile source analysis of construction-related traffic diversions were used for the combined modeling and were assumed to occur throughout the construction period.

The receptor locations where maximum predicted concentrations are anticipated to occur are identified in **Figure G-12**. While specific locations vary by time period and pollutant, the maximum predicted concentrations generally occur to the west of the modeled construction site and along the nearby roadways. As presented in **Table G-8**, total maximum concentrations from the on-site sources and traffic diversions including background concentrations are projected to be lower than the corresponding NAAQS for $PM_{2.5}$ and PM_{10} . Therefore, construction under the Viaduct Alternative would not be anticipated to result in substantial air quality effects.

Table G-8

Traffic Diversions during Construction for the Viaduct Alternative (µg/m ³)								
Pollutant	Averaging Period	Background	On-Site Construction Activity Contribution ¹	Mobile Sources Contribution ¹	Total	NAAQS		
DM	24-hour	13.5	4.9	1.5	19.9	35		
PM _{2.5}	Annual	5.6	0.3	0.4	6.3	12		
PM10	24-hour	33	5.2	8.8	47.0	150		
PM ₁₀ backgr PM _{2.5} backg	ound concentrat	ion, 36.5 µg/m³, w	are predicted to occur at the re as based on 2016–2018 data nd annual $PM_{2.5}$ (14.3 and 6.1 g station.	at the Rochester 2 moni	toring st	ation.		

Maximum Combined Concentrations from On-Site Construction Activity and Traffic Diversions during Construction for the Viaduct Alternative (µg/m³)

G. COMMUNITY GRID ALTERNATIVE

MICROSCALE ANALYSIS

CO MICROSCALE SCREENING ANALYSIS

LOS Screening Analysis

Based on the review of the intersections analyzed for the Transportation analysis, 27 and 22 intersections were projected to operate at a LOS D or worse during one or both of the peak traffic periods analyzed in the 2026 and 2056 analysis years, respectively.

Capture Criteria Screening Analysis

The LOS screening analysis indicated that there would be a 10 percent or more increase in traffic volume or a 20 percent or more decrease in speed on affected roadways for the Community Grid Alternative at 27 and 22 of the intersections for the three analysis years, respectively, requiring a Volume Threshold Screening analysis at these locations.

Volume Threshold Screening

The results of the LOS Screening, Capture Criteria, and Volume Threshold screening analyses are included as an attachment to this appendix. The highest peak hour traffic volume at these locations was projected to be 1,491 at the northbound approach of GeneseeStreet and Highbridge Rd, which is below the Volume Threshold criteria of 4,000 vehicles in the peak hour This was determined by comparing the associated emission factor of 5.63 grams per mile (cruise emission factor) and 9.77 grams per hour (idle emission factor), developed from MOVES2014a based on speed and vehicle mix, to Table 3C of the TEM. Therefore, a CO microscale dispersion modeling was not warranted for all of the intersections for the Community Grid Alternative. The Community Grid Alternative would not increase traffic volumes, reduce source-receptor distances, or change other existing conditions to such a degree as to jeopardize attainment of the CO NAAQS.

PARTICULATE MATTER (PM) MICROSCALE ANALYSIS

With the Community Grid Alternative, PM concentrations in the critical analysis year of 2026 would be below the NAAQS at all analysis sites. Furthermore, due to the shift in roadway geometry as well as the removal of the I-81 viaduct, concentrations at Site 3 are projected to decrease when compared with the No Build Alternative. The receptor locations where maximum predicted concentrations are anticipated to occur are identified in **Figures G-1** through **G-11**. While specific locations vary by time period and pollutant, the maximum predicted concentrations generally occur at an intersection of roadways where the effects of both roadways would be observed.

PM2.5 and PM10 Maximum Predicted Concentrations at Analysis Sites (µg/m ³)								
Analysis Site	Pollutant	Averaging Period	No Build Total Concentration	Community Grid Alternative Total Concentration	NAAQS			
Site 1: Crouse Avenue and	PM ₁₀	24-Hour	43.0	44.7	150			
Burnet Avenue to Crouse Avenue	PM _{2.5}	24-Hour	14.5	15.3	35			
and Erie Boulevard	F IVI2.5	Annual	5.9	6.2	12			
Site 2: N. West Street and W.	PM ₁₀	24-Hour	42.7	45.5	150			
Genesee Street	PM _{2.5}	24-Hour	14.8	15.4	35			
Genesee Street	P IVI2.5	Annual	6.3	Community Grid Alternative Total Concentration 44.7 15.3 6.2 45.5	12			
Cite 2: Almond Ctreat and	PM ₁₀	24-Hour	82.7	58.6	150			
Site 3: Almond Street and Harrison Street	DM.	24-Hour	16.7	14.6	35			
Hamson Street	PM _{2.5}	Annual	6.6	6.0	12			
Cite A: Otate Otreat and Frie	PM 10	24-Hour	46.0	46.4	150			
Site 4: State Street and Erie	DM.	24-Hour	15.5	15.2	35			
Boulevard	PM _{2.5}	Annual	6.2	6.1	12			

Table G-9

PM₁₀ background concentration, 33 µg/m³, was based on 2016–2018 data at the Rochester 2 monitoring station. PM_{2.5} background concentrations for 24-hour and annual PM_{2.5} (13.5 and 5.6 µg/m³, respectively) were based on 2016-2018 data at the East Syracuse monitoring station.

MESOSCALE ANALYSIS

A mesoscale emissions analysis for CO, VOC, NO_x, and PM was conducted in accordance with the TEM using the USEPA mobile source emissions model, MOVES2014a, and the results of the regional traffic modeling conducted for the Community Grid Alternative. The study area used for the traffic modeling was used as the study area for the mesoscale analysis. This area includes a county-wide network of interstate segments, ramp connections, and intersections that incorporate planned transportation projects in the No Build Alternative and the Community Grid Alternative (see Chapter 5, Transportation and Engineering Considerations for traffic information). The modeled roadways consist of the area where a shift in local traffic using alternate routes could occur as a result of the reconstruction or removal of the I-81 viaduct. The modeled traffic network extents are shown in Figure 1 of Appendix C-2. The mesoscale analysis was conducted for the analysis years 2026 estimated time of completion (ETC) and 2056 (ETC+30). The mesoscale analysis used estimated annual VMT by vehicle type and speed-based emission rates by link that were specific to each alternative.

The mesoscale emissions associated with traffic conditions under the Community Grid Alternative are shown in **Table G-10**. Compared to the No Build Alternative, in all analysis years, the Community Grid Alternative would result in lower emissions of all modeled criteria pollutants. Furthermore, total emissions in 2056 would also be substantially lower than emissions in earlier years due to continued turnover of fleet to lower emissions vehicles.

Table G-10

				То	ns per Ye	ar	
Analysis Year	Alternative	Annual VMT	CO	NOx	VOC	PM 10	PM _{2.5}
	No Build	3,796,753,177	12,033.6	1,746.5	340.2	95.6	255.3
	Community Grid	3,792,590,133	10,788.4	1,568.4	291.2	79.5	191.8
2026	Difference	-4,163,044	-1,245.1	-178.1	-49.0	-16.1	-63.5
	Alternative Annual VMT CO NOx No Build 3,796,753,177 12,033.6 1,746.5 3 Community Grid 3,792,590,133 10,788.4 1,568.4 3 Difference -4,163,044 -1,245.1 -178.1 (-0.11%) (-10%) (-10%) (No Build 3,988,571,639 3,873.2 352.9 Community Grid 3,982,887,754 3,595.7 305.4 Difference -5,683,886 -277.5 -47.5	(-14%)	(-17%)	(-25%)			
	No Build	3,988,571,639	3,873.2	352.9	113.7	33.0	193.0
	Community Grid	3,982,887,754	3,595.7	305.4	92.8	24.8	137.3
2056	Difference	-5,683,886	-277.5	-47.5	-20.9	-8.2	-55.8
	Dimeronioo	(-0.14%)	(-7%)	(-13%)	(-18%)	(-25%)	(-29%)

Criteria Po	llutant Emissio	ons in the No	Build and	Community	Grid Alternatives

Regional emissions would result in an overall decrease from transportation sources for all of the pollutants analyzed. The changes in emissions between the No Build and the Community Grid Alternatives are driven by three inputs—slight decreases in annual VMT, changes to traffic conditions between the alternatives (i.e., travel speed, and vehicle classification) on individual road segments, and the analysis year which (would determine fleet-wide average per vehicle-mile emission rates for both Alternatives). For all analysis years, the Community Grid Alternative would result in decreases in VMT, and the improvements in travel speed as well as the predicted shift in traffic between roadway and the associated traffic conditions would result in decreases in annual emissions for all pollutants analyzed.

MOBILE SOURCE AIR TOXICS (MSATS) ANALYSIS

FHWA's updated interim guidance includes a tiered approach for addressing MSATs for the purpose of NEPA. According to this guidance, design-year AADT projections less than 140,000 to 150,000 are considered to have low potential for MSAT effects and qualitative assessments are recommended. Since the purpose of the Project is, in part, to address structural and operational deficiencies, bring design features up to date, and improve access and connections within and through the I-81 corridor of the Project Area (see **Chapter 1, Introduction**, for full project purpose), the overall increase in traffic volumes is not expected to be substantial, with additional traffic on I-81 but a decrease in traffic on some local streets and parallel routes. The highest forecasted AADT in study area for the Community Grid Alternative is 104,717 (see **Appendix C, Attachment C**; I-690: Segment 5) is well below the FHWA criteria for a quantitative analysis.. Therefore, a qualitative assessment was conducted, in accordance with FHWA guidance.

MSAT emissions would be proportional to the VMT of the No Build and Community Grid Alternatives for a given year when variables such as fleet mix remain similar for each alternative. Since the estimated VMT under the No Build and Community Grid Alternatives varies by approximately 0.1 percent for 2056 (ETC+30), as shown in Table 6-4-4-10, there would be no appreciable difference in overall MSAT emissions between the No Build and Community Grid Alternatives in 2056. In locations where traffic volumes are predicted to increase or re-designed roadway sections would be located closer to nearby residences, schools, and businesses, there may be localized areas of increased ambient concentrations of MSATs. The localized increases in MSAT concentrations would likely be most pronounced along the re-designated portions of I-81 and parallel routes that traffic would be diverted onto, including the additional access to University Hill and points south of the city. Under both alternatives, future MSATs are expected to be substantially lower than existing conditions due to implementation of USEPA's vehicle and fuel regulations. In general, information is incomplete or unavailable to credibly predict the project-specific health impacts due to changes in MSAT emissions. To determine the potential for adverse impacts, multiple levels of modeling must be performed (emissions, dispersion, exposure, etc.) with each subsequent model building on the predictions and assumptions of the previous model. Furthermore, there are considerable uncertainties associated with the existing estimates of toxicity of the various MSAT, because of factors such as low-dose extrapolation and translation of occupational exposure data to the general population.¹³ Due to these limitations described, any predicted potential for substantial impact is likely to be much smaller than the uncertainties associated with the assumption made in order to predict the impacts.

CONSTRUCTION EFFECTS

Emissions from on-site construction equipment, on-road construction-related vehicles, diverted traffic during construction, and dust-generating construction activities have the potential to affect air quality. The potential effects of these activities on air quality are discussed in this section.

Construction of the Community Grid Alternative is anticipated to take six years to complete. An analysis was conducted to assess the effects of on-site construction activities on the surrounding community. Based on the CO screening methodologies used for the operational traffic analysis, it was determined that a microscale air quality analysis for CO is not warranted. However, to address concerns expressed from the public regarding PM air quality in the vicinity of I-81 during construction, a microscale detour traffic analysis was conducted. Traffic would be disrupted during the construction period, but detours/diversions are not expected to last more than three weeks in any one location (see **Chapter 4, Construction Means and Methods**). Therefore, in accordance with the NYSDOT's TEM, a mesoscale emissions analysis for construction traffic detours/diversions is not warranted.

ON-SITE CONSTRUCTION ACTIVITY

In general, much of the heavy equipment used in construction is powered by diesel engines that have the potential to produce relatively high PM emissions. Fugitive dust generated by construction activities is also a source of PM. In addition, gasoline engines produce relatively high levels of CO. Since USEPA mandates the use of ultra-low sulfur diesel (ULSD) fuel for all highway and non-road diesel engines,¹⁴ SO₂ emitted from the Project's construction activities would be negligible. Therefore, the three primary air pollutants of concern for construction activities are PM₁₀, PM_{2.5}, and CO.

The Martin Luther King, Jr. East (MLK, Jr. East, formerly East Castle Street) area was selected for the on-site air quality analysis because of the proximity of construction activities to several sensitive receptor locations there, including the Dr. King Elementary School, the State University of New York College of Environmental Science and Forestry, the Tucker Missionary Baptist Church, and a number of residential buildings. This location therefore represents a reasonable worst-case scenario for the analysis. The dispersion analysis included modeling of the worst-case annual and short-term (i.e., 24-

¹³ USEPA required a major reduction in the sulfur content of diesel fuel intended for use in locomotive, marine, and non-road engines and equipment, including construction equipment. As of 2015, the diesel fuel produced by all large refiners, small refiners, and importers must be ULSD fuel. Levels in non-road diesel fuel are limited to a maximum of 15 parts per million.

¹⁴ USEPA required a major reduction in the sulfur content of diesel fuel intended for use in locomotive, marine, and non-road engines and equipment, including construction equipment. As of 2015, the diesel fuel produced by all large refiners, small refiners, and importers must be ULSD fuel. Levels in non-road diesel fuel are limited to a maximum of 15 parts per million.

hour, 8-hour, and 1-hour) averaging periods. Other areas in the Project corridor were not modeled, but are discussed qualitatively, based on the reasonable worst-case analysis results.

Maximum predicted concentrations (including background) from peak construction activities under the Community Grid Alternative are presented in **Table G-12**. As shown, total maximum concentrations from the on-site sources are predicted to be lower than the corresponding NAAQS for PM_{2.5}, PM₁₀, and CO. The modeled results for the 2018 analysis year are based on construction activities at the reasonable worst-case location in the MLK, Jr. East area where sensitive receptor locations are near on-site construction activities. Lower concentration increments from construction would be expected at other locations in the study area since activities would generally be located farther away from sensitive receptor locations.

Pollutant	Averaging Period	Background	Concentration Increment from On-Site Construction Activity	Total	NAAQS
PM _{2.5}	24-hour	13.5 µg/m ³	4.1 μg/m ³	17.6 µg/m ³	35 µg/m³
	Annual	5.6 µg/m³	0.2 μg/m ³	5.8 µg/m³	12 µg/m³
PM 10	24-hour	33.0 µg/m ³	4.3 μg/m ³	37.3 µg/m ³	150 µg/m³
CO	1-hour	1.6 ppm	10.5 ppm	12.1 ppm	35 ppm
	8-hour	0.7 ppm	2.6 ppm	3.3 ppm	9 ppm
PM _{2.5} back			sed on 2016–2018 data at the Rochest annual $PM_{2.5}$ were based on 2016–2018		

Table G-11Maximum Predicted Pollutant Concentrations fromOn-Site Construction Activity for the Community Grid Alternative

COMBINED EFFECT

Since emissions from both on-site construction equipment and construction-related traffic diversions may contribute to concentrations concurrently at the same location, the combined effect was assessed where applicable. Roadway links were added to the construction AERMOD dispersion model alongside the on-site construction sources. Traffic conditions, volumes, and roadway locations from the mobile source analysis of construction-related traffic diversions were used for the combined modeling and were assumed to occur throughout the construction period.

The receptor locations where maximum predicted concentrations are anticipated to occur are identified in **Figure G-12**. While specific locations vary by time period and pollutant, the maximum predicted concentrations generally occur to the west of the modeled construction site and along the nearby roadways. As presented in **Table G-12**, total maximum concentrations from the on-site sources and traffic diversions including background concentrations are projected to be lower than the corresponding NAAQS for PM_{2.5} and PM₁₀. Therefore, construction under the Viaduct Alternative would not be anticipated to result in substantial air quality effects.

Table G-12 Maximum Combined Concentrations from On-Site Construction Activity and Traffic Diversions during Construction for the Community Grid Alternative (µg/m³)

Trance Diversions during Construction for the Community Orld Alternative													
Pollutant	Averaging Period	Background	On-Site Construction Activity Contribution ¹	Mobile Sources Contribution ¹	Total	NAAQS							
PM _{2.5}	24-hour	13.5	4.1	1.2	18.8	35							
F IVI2.5	Annual	5.6	0.2	0.5	6.3	12							
PM ₁₀	24-hour	33.0	4.3	9.6	46.9	150							
Notes:													

¹ The values shown are the contributions that are predicted to occur at the receptor of maximum total concentration. PM₁₀ background concentration, 33 μg/m³, was based on 2016–2018 data at the Rochester 2 monitoring station. PM_{2.5} background concentrations for 24-hour and annual PM_{2.5} (13.5 and 5.6 μg/m³, respectively) were based on 2016–2018 data at the East Syracuse monitoring station. Attachments

Table 3 - CO Screening Community Grid 2026 INTERSECTIONS WITH LOS D OR WORSE IN ANY PEAK PERIOD

Analysis 2202 Interactions With Do More And Price And Price And Price And Price Pric Pri			Volu	imes														
Interaction with 0.50 or words And Prot And			No Build Community Grid			% Change in Volume		No Build Speed		Build Speed		% Change		Volume Th		reshold Screening		
Interaction with LD p of Work: AM PM AU SUB AU AU A																	Threshold	Pass/Fail
Antrood Sk & L. Vaschlagton St 278 377 12.40 14.11 14.22 1880 446 14.11 14.12 14.20 14.00 5.77 12.90 14.11 14.22 14.00 4.00 5.77 12.00 14.00 </th <th>tersections with LOS D or Worse</th> <th>AM</th> <th>РМ</th> <th>AM</th> <th>PM</th> <th>AM</th> <th>PM</th> <th>AM</th> <th>PM</th> <th>AM</th> <th>PM</th> <th>AM</th> <th>PM</th> <th>Speed</th> <th>Cruise EF</th> <th>Idle EF</th> <th>(TEM Tables</th> <th></th>	tersections with LOS D or Worse	AM	РМ	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	Speed	Cruise EF	Idle EF	(TEM Tables	
n 170 170 461 170 170 676 22.80 9.39 12.4 15.40 488 4.92 2.46 5.87 400 108 70 85 76 726 726 97.4 97.4 5.17 4.00 228 279 333 322 446 5.78 13.56 17.7 4.00 5.77 4.00 201 525 326 627 7.72 17.8 7.8 14.14 7.7 5.6 3.77 4.00 5.77 5.78 14.14 5.77 5.77 4.00 5.77 5.78 14.14 5.77 5.77																	3b/3c)	
137 330 7.49 7.22 8.88 6.30 15.34 </td <td>imond St & E. Washington St</td> <td>298</td> <td>367</td> <td>455</td> <td>915</td> <td>53%</td> <td>149%</td> <td>5.27</td> <td>12.49</td> <td>14.11</td> <td>14.24</td> <td>168%</td> <td>14%</td> <td>14.11</td> <td>3.62</td> <td>9.77</td> <td>4000</td> <td>Pass</td>	imond St & E. Washington St	298	367	455	915	53%	149%	5.27	12.49	14.11	14.24	168%	14%	14.11	3.62	9.77	4000	Pass
Image Image <th< td=""><td></td><td>27</td><td>129</td><td>461</td><td>129</td><td>1607%</td><td>0%</td><td>22.80</td><td>9.39</td><td>2.74</td><td>5.20</td><td>-88%</td><td>-45%</td><td>2.74</td><td>5.63</td><td>9.77</td><td>4000</td><td>Pass</td></th<>		27	129	461	129	1607%	0%	22.80	9.39	2.74	5.20	-88%	-45%	2.74	5.63	9.77	4000	Pass
Annood SJ/Catherine S1& NY Sfelle Blvd E. 229 384 599 888 625% 13.09 6.11 14.09 6.41 4.48 5.01 9.77 4000 228 229 332 232 405 50% 15.05 6.13 4.36 -75% 4.47 5.63 9.77 4000 Constock /v & Straford S. 455 3.83 2.22 405 1.5% 2.1% 3.70 1.450 4.48 9.67 5.63 9.77 4000 Constock /v & Straford S. 455 3.89 4.73 0.74 0.050 1.1% 1.50 4.14 9.67 1.2% 3.85 4.14 5.63 9.7 4000 Constock /v & Straford S. 4.14 7.7 1.050 1.13 4.14 9.7 1.130 1.14 5.64 9.77 4000 3.33 4.13 7.7 5.66 9.77 4000 1.14 5.64 9.77 4000 1.16 5.65 9.77 4000		357	330	749	622	110%	88%	6.10	16.34	10.84	8.89	78%	-46%	8.89	4.12	9.77	4000	Pass
271 395 771 572 286 579 312 504 455 455 456 977 400 401 333 312 442 275 815 155 155 414 535 417 555 359 417 555 359 416 535 416 515 356 477 455 315 416 516 518 617 400 455 316 416 516 518 516 518 617 4000 45 718 415 716 616 616 714 812 716 328 716 328 716 326 716 306 717 4000 410 31 410 715 4417 715 414 456 418 456 716 400 717 4000 717 4000 717 4000 717 4000 716 717 4000 716 718 <td></td> <td></td> <td>70</td> <td></td> <td></td> <td>-21%</td> <td>9%</td> <td>15.76</td> <td>5.44</td> <td>5.14</td> <td></td> <td>-67%</td> <td>23%</td> <td>5.14</td> <td></td> <td></td> <td>4000</td> <td>Pass</td>			70			-21%	9%	15.76	5.44	5.14		-67%	23%	5.14			4000	Pass
1228 279 332 332 432 440* 1578 8.28 18.26 6.33 4.17 5.86 7.78 4.07 5.08 9.77 4.000 Constack Av & Stratford St 585 380 693 472 1.78 6.78 5.71 5.03 9.77 4.00 2.83 5.11 5.01 5.01 6.97 6.97 6.75 5.75 5.8 7.7 6.00 2.83 5.11 5.01 5.01 6.97 6.97 1.7 5.8 9.77 4.000 3.83 4.1 5.11 5.01 5.41 6.97 1.7 5.01 9.77 4.000 3.93 4.97 5.95 1.97 5.95 7.97 2.05 7.78 2.10 7.74 6.00 7.7 4.000 3.93 4.97 5.95 2.95 7.97 2.05 7.97 2.05 7.97 2.00 7.7 4.00 7.00 7.00 7.00 </td <td>mond St/Catherine St & NY 5/Erie Blvd E.</td> <td>229</td> <td>381</td> <td>599</td> <td>888</td> <td>162%</td> <td>133%</td> <td>10.01</td> <td>13.09</td> <td>6.13</td> <td>4.48</td> <td>-39%</td> <td>-66%</td> <td>4.48</td> <td>5.63</td> <td>9.77</td> <td>4000</td> <td>Pass</td>	mond St/Catherine St & NY 5/Erie Blvd E.	229	381	599	888	162%	133%	10.01	13.09	6.13	4.48	-39%	-66%	4.48	5.63	9.77	4000	Pass
						186%	50%	10.63	6.97	3.92		-63%	-28%	3.92	5.63		4000	Pass
Construct Av & Stranford St 566 389 639 677 13% 21% 3.70 14.50 4.14 9.77 12% -338 4.14 5.63 9.77 4000 19 45 78 65 78 0% 0% 12.74 8.88 13.04 518 556 557 556 0.87 20.64 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8.28</td> <td>18.96</td> <td>6.93</td> <td>4.67</td> <td>-16%</td> <td></td> <td>4.67</td> <td>5.63</td> <td></td> <td>4000</td> <td>Pass</td>								8.28	18.96	6.93	4.67	-16%		4.67	5.63		4000	Pass
45 78 65 78 67 676 67.4 18.28 19.46 1.45 536 157 - - - 733 130 33 131 676 67.37 7.8 32.5 41.4 655 647.6 32.5 41.4 655 647.6 32.5 41.4 655 647.6 32.5 41.4 655 647.6 32.5 64.4 655.6 63.7 62.7 63.7 72.8 23.05 2.6.6 448 9.77 4000 11 313 33 33 63.7 72.8 2.8.6 2.6.6 4.4 9.77 4000 12 9.77 555 630 5.67 -3.24 74.8 2.6.6 1.1.8 <			353			-22%	82%	18.67	13.36	3.17		-83%	-75%	3.17	5.63		4000	Pass
128 511 301 544 0% 65 17.44 8.32 17.66 57.39 0% 7.08 . <th< td=""><td>omstock Av & Stratford St</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.14</td><td></td><td>12%</td><td></td><td>4.14</td><td>5.63</td><td>9.77</td><td>4000</td><td>Pass</td></th<>	omstock Av & Stratford St									4.14		12%		4.14	5.63	9.77	4000	Pass
Image 133 130 033 131 0% 1% 13.88 13.03 13.68 17.62 0% 3% - - - Forman Av & Érie Bivl £. 19 41 7 52 63% 27% 7.82 7.62 3.25 4.41 55% 44% 3.25 4.41 55% 4.44 55% 27.82 2.65% 4.44 9.77 4000 363 357 556 9.83 53% 1.57% 2.65% 2.865 2.86 4.74 9.77 4000 22 65 368 297 570 4.44 55% 2.84 2.86 1.64 1.64 4.71 9.77 4000 22 555 630 367 3.27 1.28 2.86 2.44 2.55 5.81 2.71 9.75 5.86 1.28 4.64 4.64 3.6 4.64 4.64 3.6 4.64 4.64 3.6 4.77 4.700														-	-	-		
Forman Av& Eric Bivit E. 19 41 7 52 -63% 27% 7.28 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.81 7.84 7.84 7.83 7.81 7.84 7.84 7.83 7.83 7.83 7.83 7.84 7.84 7.84 7.84 7.84 7.84 7.84 7.84 7.84 7.84 7.84 7.84														-	-	-		
131 431 833 627 158 678 27.81 21.30 27.84 97.8 27.80 27.84 97.8 97.8 97.9 97.9 97.9 97.8 97.8 97.8 97.9																-		
1 1 3 3 5 5 5 7 2 28.05 27.42 28.05 27.46 4% 9% 7.40 27.1 9.77 4000 N. Slina St & L/W Wilkow St. 28 8 133 33 470% 5.58 13.61 12.18 24.07 10% 8.78 12.48 4.12 9.77 4000 907 555 630 5.67 3.2% 2.87 2.88 8.81 7.51 5.88 12.48 4.84 7.32 0.46% 4.42 6.77 4000 002 509 396 444 5.67 2.83 8.81 7.51 9.15 5.68 5.63 5.63 5.77 4000 002 509 396 428 2.80 2.79 5.36 2.10 1.44 5.63 5.73 5.73 7.7 4000 1.51 4.80 1.81 5.44 5.65 5.84 3.33 3.35 1.47	orman Av & Erie Blvd E.																	Pass
N. Salina St & E. /W. Willow St 206 368 297 570 44% 55% 24.43 26.56 15% -2% 26.06 2.71 400 927 555 630 567 -32% 2% 2.55 8.81 2.54 7.32 0% -17% -																		Pass
23 68 133 33 478% 5.1% 5.89 13.61 12.18 24.77 107% 82% 12.18 41.2 9.77 4000 N. Salina St & Herald PI 89 351 241 572 17.1% 6.3% 12.97 3.18 18.84 3.61 46% 3.44 5.63 9.77 4000 1290 573 370 816 2.28% 42% 6.15 5.88 5.65 5.63 9.77 4000 1290 573 370 816 2.28% 42% 6.15 5.86 5.65 5.63 9.77 4000 1200 573 139 130 6.7% 7.73 3.29 6.35 1.490 4.34 5.65 5.63 9.77 3800 1251 480 178 3.92 4.02 2.23 2.27 3.28 -4.24 2.38 8.65 9.77 3800 125 463 373 373																		Pass
927 555 630 567 328 28 2.55 8.81 2.54 7.22 0% -17% -	. Salina St & E./W. Willow St																	Pass
N. Saina St & Herald PI 89 351 241 572 171% 63% 12.97 31.8 18.94 3.61 44% 1.4% 5.63 9.77 4000 290 573 370 816 28% 42% 6.15 5.88 5.65 5.69 -8% -3% 5.63 9.77 4000 N. State St & Buttemut St 233 460 186 250 -20% -48% 2.79 5.36 2.10 1.47 -25% -73% 1.47 8.65 9.77 4000 255 4163 327 219 28% 34% 3.29 6.35 1.490 4.34 5.63 9.77 4000 251 440 178 339 -29% -246 4.10 3.55 2.19 38% -55 9.77 3800 N/S. Geddes St & Erie Blvd W. 990 868 1073 910 8% 50.4 4.18 4.84 3.61 -4% -4% - - - - - - - - - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.12</td><td></td><td>4000</td><td>Pass</td></td<>															4.12		4000	Pass
902 509 336 404 -56% -21% 2.83 8.81 7.51 9.15 166% 47% 290 573 370 816 228% -15 5.86 5.69 -9% -3% 5.69 9.77 4000 1 422 703 139 190 -67% -73% 3.29 6.35 14.30 4.34 353% -32K 4.34 5.65 9.77 4000 255 163 327 219 28% -79% 2.64 4.10 3.65 2.19 3.86 4.78 2.19 8.65 9.77 4000 1251 480 178 339 -29% 2.64 4.10 3.65 4.44 5.61 -4.45 5.63 9.77 4000 125 6.04 653 8.18 54% 5.51 5.16 1.16 1.56 2.48 -1.5 -3.63 9.77 4000 -4.53															-			
290 573 370 816 28% 42% 6.15 5.88 5.65 5.63 9.77 4000 N. State St & Butternut St 233 480 186 250 -20% -48% 2.19 5.36 2.10 1.47 -25% -1.47 4.85 9.77 4000 422 703 1.39 1.90 -67% -7.3% 3.29 6.45 1.40 4.34 5.63 9.77 4000 255 1.63 3.27 2.19 2.8% 3.4% 3.29 4.02 2.23 2.27 -32% 4.44 2.38 6.56 9.77 3800 N/S. Geddes St & Frie Bivd W. 990 868 1073 910 8% 5.44 4.84 3.61 -44% -4	. Salina St & Herald Pl																4000	Pass
N State St & Butternut St 233 480 186 250 -20% -48% 2.79 5.36 2.10 1.47 -23% -1.47 8.65 9.77 3800 422 703 139 190 -67% -73% 3.29 6.35 1.490 4.34 35% -32% 4.44 5.63 9.77 4000 255 163 327 219 28% 34% 3.29 6.05 1.490 4.24 32% 4.44% -12% 4.47% -219 8.65 9.77 3800 N/S. Geddes St & Erie Blvd W. 990 868 1073 910 8% 5% 5.04 4.18 4.84 3.64 -20% -31% 5.44 5.63 9.77 4000 425 604 653 818 54% 38% 9.15 3.16 11.67 3.68 17% 3.68 5.63 9.77 4000 425 604 653 818 54% 35% 9.16 11.67 3.68 28% 1.7% 3.68 5.63 9.77																		_
422 703 139 190 -6.7% -7.3% 3.29 6.35 14.90 4.34 333% -32% 4.34 5.63 9.77 4000 255 163 327 219 28% 34% 3.29 4.02 2.23 2.23 -32% -44% 2.19 8.65 9.77 3800 N/S. Geddes St & Erie Blvd W. 990 868 1073 910 8% 5% 5.04 4.18 4.84 3.61 -4% -14% - - - - 322 369 218 427 -34% 16% 7.40 7.91 5.94 5.44 -20% -31% 5.44 5.63 9.77 4000 425 303 470 337 3% 2% 3.18 3.46 3.23 3.55 1% .86 9.77 4000 435 333 977 1491 903 -3% -3% 9.50 9.12 8.90																		Pass
Product 255 163 327 219 28% 34% 3.29 4.02 2.23 2.27 -32% -44% 2.23 8.65 9.77 3800 N/S. Geddes St & Erie Blvd W. 990 868 1073 910 8% 5.54 4.18 4.84 3.61 -4% - - - 332 369 218 427 -34% 16% 7.40 7.91 5.94 5.44 -20% -31% 5.44 5.63 9.77 4000 425 600 653 818 54% 355 1.16 3.68 5.63 9.77 4000 455 330 470 337 3% 2.8 3.18 3.88 1.82 3.85 1.82 3.83 3.85 9.77 4000 4154 977 1491 903 -3% 9.50 9.12 8.90 7.44 - - - - - - - - <td>. State St & Butternut St</td> <td></td> <td>Pass</td>	. State St & Butternut St																	Pass
n 251 480 178 339 -29% -29% 2.64 4.10 3.65 2.19 3.85 -47% 2.19 8.65 9.77 3800 N/S. Geddes St & Erie Blvd W. 990 668 1073 910 8% 5% 5.04 4.18 4.84 3.64 -4% -1.4% - </td <td></td> <td>Pass</td>																		Pass
N/S. Geddes St & Erie Blvd W. 990 868 1073 910 8% 5% 5.04 4.18 4.84 3.61 -4% -14% - - - 332 369 218 427 -34% 16% 7.40 7.91 5.94 5.44 -20% -31% 5.44 5.63 9.77 4000 425 604 653 818 54% 35% 9.15 3.16 11.67 3.68 28% 17% 3.68 5.63 9.77 4000 455 330 470 337 3% 2% 3.18 3.86 3.23 3.55 1% -8% -																		Pass
332 369 218 427 -34% 16% 7.40 7.91 5.94 5.44 -20% -31% 5.44 5.63 9.77 4000 425 604 653 818 54% 326 9.15 3.16 11.67 3.68 228 17% 3.68 5.63 9.77 4000 455 330 470 337 3% 2% 3.16 11.67 3.68 2.23 3.55 1% -3% 4.39 5.63 9.77 4000 1543 977 1491 903 -3% -8% 9.50 9.12 8.90 7.09 -6% -22% 7.09 5.63 9.77 4000 1384 1092 1194 994 -14% -9% 5.17 10.11 13.08 10.57 153% 5% -<	10 Condition Ct. Q. Evic Divel VI																3800	Pass
425 604 653 818 54% 35% 9.15 3.16 11.67 3.68 28% 17% 3.68 5.63 9.77 4000 455 330 470 337 3% 2% 3.18 3.86 3.23 3.55 1% -* - - NY 5/E. Genesee St/Highbridge Rd & Bridlepath Rd/Lyndon Rd 9 67 48 60 433% -10% 5.01 4.57 4.39 4.44 -12% -3% 5.63 9.77 4000 1384 1092 1194 993 -3% -8% 9.50 9.11 13.08 10.57 153% 5% -	/S. Geddes St & Erie Bivd W.																1000	Dese
M M																		Pass
NY 5/E. Genesee St/Highbridge Rd & Bridlepath Rd/Lyndon Rd 9 67 48 60 433% -10% 5.01 4.57 4.39 4.44 -12% -3% 4.39 5.63 9.77 4000 1543 977 1491 903 -3% -8% 9.50 9.12 8.90 7.09 -6% -22% 7.09 5.63 9.77 4000 1543 977 1491 903 -3% -8% 9.50 9.12 8.90 7.09 -6% -22% 7.09 5.63 9.77 4000 1384 1092 1194 994 14% -9% 5.17 1.01 1.308 10.57 153% 5% - <td></td> <td>3.08</td> <td>5.03</td> <td>9.77</td> <td>4000</td> <td>Pass</td>														3.08	5.03	9.77	4000	Pass
1543 977 1491 903 -3% -8% 9.50 9.12 8.90 7.09 -6% -2% 7.09 5.63 9.77 4000 1384 1092 1194 994 -14% -9% 5.17 10.11 13.08 10.57 153% 5% - - - - 92 263 92 265 0% 1% 4.86 2.33 4.55 4.23 -6% 81% - - - - 1360 2963 1233 2923 -9% -1% 29.82 9.50 35.86 20.22 20% 113% 4.12 9.77 4000 1360 2963 1233 2923 -9% -1% 10.94 21.73 -30% 13% 4.12 9.77 4000 1360 2963 1233 2923 -9% -14% 15.55 24.71 10.94 21.73 -30% 13.8 362 9.77 4000 5.6eddes St & Grand Av/Shonnard St 137 1467 827 1498	V E/E Conosco St/Highbridge Pd & Pridlenath Pd/Lynden Pd													- 1 20	-	- 0.77	4000	Pass
1384 1092 1194 994 -14% -9% 5.17 10.11 13.08 10.57 153% 5% - - - 92 263 92 265 0% 1% 4.86 2.33 4.55 4.23 -6% 81% - - - 1360 2963 1233 2923 -9% -1% 29.82 9.50 35.86 20.22 20% 113% - - - 5. Geddes St & Grand Av/Shonnard St 837 551 899 627 7% 14% 10.94 21.73 -30% -1% 4.12 9.77 4000 1 34 2 3 100% -91 13.18 3.62 9.77 4000 778 1467 827 1498 6% 2% 5.24 9.05 4.94 9.34 -6% 3% - - - 5. Geddes St & Marcellus St 1095 853 1153 896 5% 5.5% 25.85 25.12 11.07 80% -61% 5.63	T S/E. Genesee St/Highblidge Ku & Bridlepath Ku/Lyhdolf Ku	-																Pass
92 263 92 265 0% 1% 4.86 2.33 4.55 4.23 -6% 81% - - - 1360 2963 1233 2923 -9% -1% 29.82 9.50 35.86 20.22 20% 113% - - - 5. Geddes St & Grand Av/Shonnard St 837 551 899 627 7% 14% 15.55 24.71 10.94 21.73 -30% -12% 10.94 4.12 9.77 4000 1 34 2 3 100% -91% - 13.18 3.62 9.77 4000 1 34 2 3 100% -91% - 13.18 3.62 9.77 4000 778 1467 827 1498 6% 2% 5.67 10.15 5.00 -25% -12% 5.63 9.77 4000 5. Geddes St & Marcellus St 1095 853 1153 896 </td <td></td> <td>5.05</td> <td></td> <td>4000</td> <td>rdss</td>															5.05		4000	rdss
1360 2963 1233 2923 -9% -1% 29.82 9.50 35.86 20.22 20% 113% - - - S. Geddes St & Grand Av/Shonnard St 837 551 899 627 7% 14% 15.55 24.71 10.94 21.73 -30% -12% 10.94 4.12 9.77 4000 1 34 2 3 100% -91% 14.60 13.18 13.18 3.62 9.77 4000 778 1467 827 1498 6% 2% 5.24 9.05 4.94 9.34 -6% 3% - - - 5. Geddes St & Marcellus St 52 454 619 452 6% 0% 13.61 5.67 10.15 5.00 -25% -12% 5.00 5.63 9.77 4000 5. Geddes St & Marcellus St 1095 853 1153 896 5% 25.85 28.25 5.12 11.07 -80% 6.14 5.3 9.77 4000 6. 60 72 16																		
S. Geddes St & Grand Av/Shonnard St 837 551 899 627 7% 14% 15.55 24.71 10.94 21.73 -30% -12% 10.94 4.12 9.77 4000 1 34 2 3 100% -91% 14.60 13.18 13.18 3.62 9.77 4000 778 1467 827 1498 6% 2% 5.24 9.05 4.94 9.34 -6% 3% - - - 582 454 619 452 6% 0% 13.61 5.67 10.15 5.00 -25% -12% 5.00 5.63 9.77 4000 5. Geddes St & Marcellus St 1095 853 1153 896 5% 5% 25.85 28.25 5.12 11.07 -80% -61% 5.12 5.63 9.77 4000 5. Geddes St & Marcellus St 1095 853 1153 896 5% 5% 28.25 5.12 11.07 -80% -61% 5.12 5.63 9.77 4000 16 <td></td>																		
1 34 2 3 100% -91% 14.60 13.18 13.18 3.62 9.77 4000 778 1467 827 1498 6% 2% 5.24 9.05 4.94 9.34 -6% 3% - - - 582 454 619 452 6% 0% 13.61 5.67 10.15 5.00 -25% -12% 5.00 5.63 9.77 4000 5. Geddes St & Marcellus St 1095 853 1153 896 5% 5% 28.85 5.12 11.07 -80% -61% 5.12 5.63 9.77 4000 16 72 16 71 0% -1% 25.17 24.90 25.32 24.06 1% -3% - - - 5. Geddes St & W. Fayette St 1095 912 1148 962 5% 5% 26.31 24.83 25.19 0% -4% - - - - - - - - - - - - -	Geddes St & Grand Av/Shonnard St													10 94	4 12	9 77	4000	Pass
778 1467 827 1498 6% 2% 5.24 9.05 4.94 9.34 -6% 3% - - - 582 454 619 452 6% 0% 13.61 5.67 10.15 5.00 -25% -12% 5.00 5.63 9.77 4000 5. Geddes St & Marcellus St 1095 853 1153 896 5% 5% 25.85 28.25 5.12 11.07 -80% -61% 5.12 5.63 9.77 4000 16 72 16 71 0% -1% 25.17 24.90 25.32 24.06 1% -3% - - - 810 1262 845 1338 4% 6% 24.76 26.31 24.83 25.19 0% -4% - - - 5. Geddes St & W. Fayette St 1095 912 1148 962 5% 5% 4.86 5.82 2.59 2.45 -47% -58% 2.45 8.65 9.77 3800								10.00	2-1.7 1			30/0	12/0					Pass
582 454 619 452 6% 0% 13.61 5.67 10.15 5.00 -25% -12% 5.00 5.63 9.77 4000 S. Geddes St & Marcellus St 1095 853 1153 896 5% 5% 25.85 28.25 5.12 11.07 -80% -61% 5.12 5.63 9.77 4000 16 72 16 71 0% -1% 25.17 24.90 25.32 24.06 1% -3% - - - 810 1262 845 1338 4% 6% 24.76 26.31 24.83 25.19 0% -4% - - - S. Geddes St & W. Fayette St 1095 912 1148 962 5% 5% 4.86 5.82 2.59 2.45 -47% -58% 2.45 8.65 9.77 3800								5.24	9.05			-6%	3%					1 400
S. Geddes St & Marcellus St 1095 853 1153 896 5% 25.85 28.25 5.12 11.07 -80% -61% 5.12 5.63 9.77 400 16 72 16 71 0% -1% 25.17 24.90 25.32 24.06 1% 3% - - - 810 1262 845 1338 4% 6% 24.76 26.31 24.83 25.19 0% -4% - - - S. Geddes St & W. Fayette St 1095 912 1148 962 5% 5% 4.86 5.82 2.59 2.45 -47% -58% 2.45 8.65 9.77 3800		_															4000	Pass
16 72 16 71 0% -1% 25.17 24.90 25.32 24.06 1% -3% - - - 810 1262 845 1338 4% 6% 24.76 26.31 24.83 25.19 0% -4% - - - S. Geddes St & W. Fayette St 1095 912 1148 962 5% 5% 4.86 5.82 2.59 2.45 -47% -58% 2.45 8.65 9.77 3800	Geddes St & Marcellus St																4000	Pass
810 1262 845 1338 4% 6% 24.76 26.31 24.83 25.19 0% -4% - - - S. Geddes St & W. Fayette St 1095 912 1148 962 5% 5% 4.86 5.82 2.59 2.45 -47% -58% 2.45 8.65 9.77 3800																		
S. Geddes St & W. Fayette St 1095 912 1148 962 5% 5% 4.86 5.82 2.59 2.45 -47% -58% 2.45 8.65 9.77 3800														-	-	-		
	Geddes St & W. Fayette St													2.45	8.65	9.77	3800	Pass
371 1067 210 884 -43% -17% 10.34 4.86 11.74 9.98 14% 105%		371	1067	210	884	-43%	-17%	10.34	4.86	11.74	9.98	14%	105%					
														9.86	4.12	9.77	4000	Pass
498 377 504 342 1% -9% 4.48 5.49 7.59 9.01 69% 64%		498			342	1%	-9%	4.48		7.59	9.01			-	-	-		

Table 3 - CO Screening Community Grid 2026 INTERSECTIONS WITH LOS D OR WORSE IN ANY PEAK PERIOD

		Volumes				% Change in Volume		ild Speed	Puild	Build Speed		% Change		Volume Threshold Screening				
Analysis Year: 2026	No	Build	Commu	nity Grid	% change ii	i volume	NO BUI	na speed	Bulla	speed	76 Change			volume mre	shold Scree	aning		
Intersections with LOS D or Worse	АМ	РМ	АМ	РМ	АМ	РМ	АМ	РМ	АМ	РМ	АМ	РМ	Speed	Cruise EF	Idle EF	Threshold (TEM Tables 3b/3c)	Pass/Fail	
S. Salina St & E./W. Adams St	451	486	603	619	34%	27%	2.33	2.54	3.37	2.54	45%	0%	2.54	5.63	9.77	4000	Pass	
	35	289	106	381	203%	32%	1.35	3.32	1.46	3.45	9%	4%	1.46	8.65	9.77	3800	Pass	
	353	358	361	345	2%	-4%	4.98	3.48	3.54	3.23	-29%	-7%	3.23	5.63	9.77	4000	Pass	
	926	426	1024	485	11%	14%	2.84	7.46	2.75	5.48	-3%	-27%		5.63	9.77	4000	Pass	
S. Salina St & Harrison St and Onondaga St	302	278	424	396	40%	42%	2.91	3.14	3.76	3.11	29%	-1%		5.63	9.77	4000	Pass	
	512	643	180	654	-65%	2%	8.56	5.18	1.29	2.40	-85%	-54%		8.65	9.77	3800	Pass	
	362	283	560	406	55%	43%	12.69	19.57	11.83	17.61	-7%	-10%	11.83	4.12	9.77	4000	Pass	
	245	257	356	351	45%	37%	4.00	3.01	5.08	5.83	27%	94%		5.63	9.77	4000	Pass	
S. Warren St & E. Water St	187	369	292	509	56%	38%	10.64	11.44	10.82	10.57	2%	-8%	10.57	4.12	9.77	4000	Pass	
	602	318	581	371	-3%	17%	21.81	13.14	12.31	14.51	-44%	10%	12.31	4.12	9.77	4000	Pass	
C. Manuar Ch.D. Handara Ch	59	270	91	128	54%	420/	7.84	7.05	5.85	3.48	-25%	200/	3.48	5.63	9.77	4000	Pass	
S. Warren St & Harrison St	285 900	378	269 237	422 685	-6% -74%	12% -5%	10.21 13.43	7.05	3.93	4.53	-62%	-36% -66%	3.93	5.63	9.77	4000	Pass	
	900 16	720 7	237	7	-74% -69%	-5% 0%	23.16	15.51 24.26	4.14 5.86	5.30 8.14	-69% -75%	-66%	4.14 5.86	5.63 5.63	9.77 9.77	4000 4000	Pass	
	10	/	418	, 241	-09%	0%	25.10	24.20	5.88	8.14 4.70	-73%	-00%	5.80 4.70	5.63	9.77	4000	Pass Pass	
Solar St & Bear St	59	384	123	427	108%	11%	1.82	3.67	1.66	3.54	-9%	-4%	-	8.65	9.77	3800	Pass	
	716	743	898	1044	25%	41%	3.63	4.54	3.44	4.47	-5%	-4%	3.44	5.63	9.77	4000	Pass	
	191	260	235	268	23%	3%	6.05	10.55	5.32	9.80	-12%	-7%	5.32	5.63	9.77	4000	Pass	
	449	472	557	609	24%	29%	4.02	6.34	4.05	6.35	1%	0%	4.05	5.63	9.77	4000	Pass	
Teall Av & Canal St	532	1321	505	1252	-5%	-5%	24.67	5.26	25.82	6.43	5%	22%	-	-	-	4000	1 455	
	5	96	11	99	120%	3%	10.10	9.20	20102	6.85	-100%	-26%	6.85	5.63	9.77	4000	Pass	
	1016	845	972	840	-4%	-1%	21.70	24.25	22.64	25.61	4%	6%	-	-	-			
	52	123	19	56	-63%	-54%	24.87	19.26	25.13	25.03	1%	30%	-	-	-			
Teall Av & Erie Blvd E.	179	395	191	455	7%	15%	1.06	1.50	1.32	1.94	25%	29%	1.32	8.65	9.77	3800	Pass	
	474	771	463	702	-2%	-9%	14.59	8.65	15.19	11.09	4%	28%	-	-	-			
	558	486	615	601	10%	24%	4.38	1.78	2.24	2.26	-49%	27%	2.24	8.65	9.77	3800	Pass	
	286	639	193	459	-33%	-28%	25.26	14.95	27.87	20.01	10%	34%	-	-	-			
Teall Av & Lynch St	436	998	437	914	0%	-8%	27.40	5.95	28.15	8.89	3%	49%	-	-	-			
	12	36	13	36	8%	0%	12.79	2.94	12.98	4.29	1%	46%	-	-	-			
	662	496	701	631	6%	27%	27.98	27.55	27.85	27.31	0%	-1%	27.31	2.71	9.77	4000	Pass	
	7	71	7	65	0%	-8%	13.23	12.41	13.24	12.45	0%	0%	-	-	-			
US 11/N. Salina St & Hiawatha Blvd E.	22	104	271	392	1132%	277%	1.23	0.96	1.46	1.40	19%	46%	1.40	8.65	9.77	3800	Pass	
	106	297	127	346	20%	16%	12.86	10.98	9.70	8.59	-25%	-22%		4.12	9.77	4000	Pass	
	396	734	429	753	8%	3%	5.90	2.02	3.35	2.06	-43%	2%	2.06	8.65	9.77	3800	Pass	
	578	648	675	708	17%	9%	10.07	6.09	6.68	10.14	-34%	67%	6.68	5.63	9.77	4000	Pass	
	1118	1239	1053	1197	-6%	-3%	11.90	4.60	6.15	3.56	-48%	-23%	3.56	5.63	9.77	4000	Pass	
US 11/N. Salina St & NY 298/Court St & Alford St	353	600	366	606	4%	1%	7.78	2.90	5.17	2.99	-34%	3%	2.99	5.63	9.77	4000	Pass	
	25	51	26	62	4%	22%	7.66	7.77	7.92	13.04	3%	68%	7.92	4.12	9.77	4000	Pass	
	252	311	242	351	-4%	13%	5.90	5.62	5.94	5.41	1%	-4%	5.41	5.63	9.77	4000	Pass	
	338	270	420	358	24%	33%	13.04	13.40	12.62	13.43	-3%	0%	12.62	3.62	9.77	4000	Pass	
	224	267	114	90	-49%	-66%	8.89	8.79	6.04	6.40	-32%	-27%	6.04	5.63	9.77	4000	Pass	

Table 3 - CO Screening Community Grid 2026 INTERSECTIONS WITH LOS D OR WORSE IN ANY PEAK PERIOD

	Volumes				% Change in Volume		No Build Speed		Build Speed		% Change						
Analysis Year: 2026	No Build		Community Grid		vo enange in volume		No build Speed		build Speed		76 Change		Volume Threshold Screening				
Intersections with LOS D or Worse	АМ	РМ	АМ	РМ	АМ	РМ	АМ	РМ	АМ	PM	АМ	РМ	Speed	Cruise EF	Idle EF	Threshold (TEM Tables 3b/3c)	Pass/Fail
US 11/S. State St & E. Water St	184	494	333	798	81%	62%	5.40	4.08	4.27	3.58	-21%	-12%	3.58	5.63	9.77	4000	Pass
	85	99	84	78	-1%	-21%	16.48	15.27	14.43	11.66	-12%	-24%	11.66	4.12	9.77	4000	Pass
	603	280	762	427	26%	53%	2.31	1.35	8.35	1.61	262%	20%	1.61	8.65	9.77	3800	Pass
	180	73	194	104	8%	42%	5.66	13.19	7.90	5.58	40%	-58%	5.58	5.63	9.77	4000	Pass
Walnut Av & E. Water St	201	245	267	339	33%	38%	17.01	13.41	15.73	6.51	-8%	-51%	6.51	5.63	9.77	4000	Pass
	20	24	17	42	-15%	75%	21.34	20.26	22.00	23.51	3%	16%	22.00	3.24	9.77	4000	Pass
	95	102	129	157	36%	54%	6.10	6.25	5.63	6.00	-8%	-4%	5.63	5.63	9.77	4000	Pass
Walnut PI & Waverly Av	23	68	32	78	39%	15%	6.63	4.09	8.64	3.42	30%	-16%	3.42	5.63	9.77	4000	Pass
	249	244	270	249	8%	2%	3.88	6.47	3.28	5.62	-16%	-13%	-	-	-		
	224	474	219	488	-2%	3%	6.35	7.36	4.70	6.99	-26%	-5%	4.70	5.63	9.77	4000	Pass
Westmoreland Av & Erie Blvd E.	67	152	84	185	25%	22%	1.58	1.47	1.52	1.55	-3%	5%	1.52	8.65	9.77	3800	Pass
	433	748	394	700	-9%	-6%	28.23	28.10	28.31	28.15	0%	0%	-	-	-		
	159	240	165	260	4%	8%	8.00	8.79	7.70	8.38	-4%	-5%	-	-	-		
	280	532	274	564	-2%	6%	34.87	31.24	35.13	31.64	1%	1%	-	-	-		